

Universität Stuttgart

Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung (IGTE); ehemals ITW

Forschungsbericht zum BMWi-Vorhaben

Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt: ColStoSys¹)

¹Schwerpunkt Kollektoren (Col), Speicher (Sto) und Gesamtsysteme (Sys)

Akronym "KoST"

Förderkennzeichen:0325860ALaufzeit des Vorhabens:01.04.2016 bis 31.06.2019

Bearbeitung: Universität Stuttgart
Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung (IGTE);
ehemals Institut für Thermodynamik und Wärmetechnik (ITW)
Forschungs- und Testzentrum für Solaranlagen (TZS)
Stephan Fischer, Harald Drück, Stephan Bachmann, Markus Gensbaur
Pfaffenwaldring 6, 70550 Stuttgart
Tel. 0711/685-63231, Fax 0711/685-63503
E-Mail: stephan.fischer@igte.uni-stuttgart.de
harald.drueck@igte.uni-stuttgart.de

Stuttgart, 31. Januar 2020

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) unter dem Förderkennzeichen 0325985A gefördert. Die Autorinnen und Autoren danken für die Unterstützung und übernehmen die Verantwortung für den Inhalt dieses Berichts. Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Hinweis:

Durch die Zusammenführung des ITW mit zwei anderen Instituten am 01.07.2018 ergibt sich der neue Institutsname Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung (IGTE). Das Institutskürzel IGTE wird ab diesem Datum verwendet. Für Dokumente oder Textpassagen die vor dem 01.07.18 erstellt wurden, wird die Abkürzung ITW bzw. TZS beibehalten.

Verbundpartner:

Fraunhofer ISE Fraunhofer IAO

Industriepartner:

Citrin Solar GmbH Ernst Schweizer AG EMZ Hanauer GmbH & Co KGaA GREENoneTEC Solarindustrie GmbH KBB Kollektorbau GmbH Ritter Energie und Umwelttechnik GmbH & Co. KG Solvis GmbH

Assoziierte Partner:

Zentralverband des Deutschen Dachdeckerhandwerks e. V. (ZVDH), Bundesverband Solarwirtschaft e.V. (BSW), Deutsches Institut für Bautechnik (DIBt)

Kurzfassung

Solarthermische Anlagen zur Trinkwassererwärmung und Heizungsunterstützung sind in Deutschland seit längerem etabliert und verzeichneten über viele Jahre stark ansteigende Absatzzahlen. Zum weiteren Ausbau des Anteils der thermischen Solartechnik an der regenerativen Wärmebereitstellung ist eine deutliche Reduzierung des solaren Wärmepreises notwendig um die Wettbewerbsfähigkeit der Solarthermie gegenüber anderen Wärmeerzeugungstechnologien zu steigern. Hierzu sind vor allem die Herstellkosten der Komponenten einer thermischen Solaranlage zu senken aber auch deren Installation deutlich zu vereinfachen und fehlerfreier zu gestalten um einen wartungsarmen und effizienten Betrieb der Solaranlage zu gewährleisten.

Ziel des Projekts war es daher, die wesentlichen Komponenten einer thermischen Solaranlage (Sonnenkollektor, Montagesystem, Speicher und Regelung) sowie die hydraulischen und mechanischen Schnittstellen zu standardisieren um eine signifikante Reduktion (- 40 %) des solaren Wärmepreises zu erreichen.

Im Rahmen des Forschungsvorhabens wurde vom Instituts für Thermodynamik und Wärmetechnik (ITW), später dem Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung (IGTE) der Universität Stuttgart zusammen mit den Verbundpartnern Fraunhofer ISE und Fraunhofer IAO sowie den Projektpartnern aus der Industrie (Citrin Solar GmbH, EMZ Hanauer GmbH & Co KGaA, Ernst Schweizer AG, GREENoneTEC Solarindustrie GmbH, KBB Kollektorbau GmbH, Ritter Energie und Umwelttechnik GmbH & Co. KG und Solvis GmbH) Standards für folgende Komponenten entwickelt:

- Flachkollektor
- Kollektorbefestigung
- Regler
- Trinkwasserspeicher
- Kombispeicher
- Mikrozirkulationsbremse
- Solarstation

Grundlage für die Standards waren immer eine detaillierte Marktrecherche gefolgt von der Analyse in Bezug auf Marktverbreitung, thermische Leistungsfähigkeit und Akzeptanz bei Hersteller, Installateur und Endverbraucher. Die Ableitung des Standards erfolgte jeweils zusammen mit allen Projektbeteiligten.

Im vorliegenden Forschungsbericht werden zunächst die Marktrecherchen zu den einzelnen Komponenten, deren Analyse und die daraus abgeleiteten Standards vorgestellt. Des Weiteren werden die Auswirkungen von typischen Installationsfehlern die durch eine konsequente Standardisierung der Komponenten und Schnittstellen vermeidbar wären dargestellt und deren Auswirkung auf die thermische Leistungsfähigkeit von thermischen Solaranlagen quantifiziert. Ergänzend wird das Ergebnis der Begleitung der Montagen von insgesamt 4 Solaranlagen im Hinblick auf Werkzeug, Materialeinsatz, Zeitaufwand und Ergometrie dargestellt. Die zusätzlichen Tätigkeiten in der Normungsarbeit und in der IEA SHC Task 54 "Price Reduction of Solar Thermal Systems" und der IEA SHC Task 57 "Solar Standards and Certification" werden aufgezeigt und erläutert. Abschließend werden die Inhalte und Ergebnisse des Forschungsberichts zusammengefasst und bewertet sowie weitere Ansatzpunkte für zukünftige Arbeiten aufgezeigt.

Abstract

Solar thermal systems for DHW heating and central heating backup have been established in Germany for some time now and have recorded sharply rising sales figures over many years. In order to further expand the share of solar thermal technology in the renewable heat supply, a significant reduction in the price of solar heat is necessary to increase the competitiveness of solar thermal energy compared with other heat generation technologies. To this end, the manufacturing costs of the components of a solar thermal system in particular need to be reduced, but also their installation needs to be significantly simplified and made more error-free in order to ensure low-maintenance and efficient operation of the solar system.

The aim of the project was therefore to standardize the essential components of a solar thermal system (solar collector, mounting system, storage tank and control) as well as the hydraulic and mechanical interfaces in order to achieve a significant reduction (- 40 %) in the price of solar heat.

As part of the research project, the Institute for Thermodynamics and Thermal Engineering (ITW), later the Institute for Building Energetic, Thermotechnology and Energy Storage (IGTE) at the University of Stuttgart, together with the association partners Fraunhofer ISE and Fraunhofer IAO and the project partners from industry (Citrin Solar GmbH, EMZ Hanauer GmbH & Co KGaA, Ernst Schweizer AG, GREENoneTEC Solarindustrie GmbH, KBB Kollektorbau GmbH, Ritter Energie und Umwelttechnik GmbH & Co. KG and Solvis GmbH) developed standards for the following components:

- flat plate collector
- collector mounting
- controller
- hot water store
- combi store
- microcirculation inhibitor
- solar station

The standards were always based on a detailed market research followed by an analysis with regard to market penetration, thermal performance and acceptance by manufacturers, installers and end users. The standard was derived together with all project participants.

This research report first presents the market research on the individual components, their analysis and the standards derived from them. In addition, the effects of typical installation errors that could have been avoided by consistent standardization of the components and interfaces are presented and their impact on the thermal performance of solar thermal systems is quantified. In addition, the results of the monitoring of the installation of a total of 4 solar thermal systems with regard to tools, material usage, time expenditure and ergometry are presented. The additional activities in the standardization work and in the IEA SHC Task 54 "Price Reduction of Solar Thermal Systems" and the IEA SHC Task 57 "Solar Standards and Certification" are shown and explained. Finally, the contents and results of the research report are summarized and evaluated and further starting points for future work are pointed out.

Inhaltsverzeichnis

Ku	rzfas	sung	III		
Ab	strac	t	IV		
No	menk	datur	IX		
	Groß	Be lateinische Symbole	IX		
	Kleir	ne lateinische Symbole	IX		
	Kleir	ne griechische Symbole	IX		
	Abki	ürzungen	X		
	Indiz	zes	XI		
1	Ein	führung	1		
	1.1	Motivation und Problemstellung	1		
	1.2	Stand der Technik und aktuelle Entwicklungen	2		
	1.3	Zielsetzung und Aufbau	4		
2	Projektkoordination und Öffentlichkeitsarbeit (AP 1); ITW7				
	2.1	Projektkoordination (AP 1.1)	7		
	2.2	Öffentlichkeitsarbeit (AP 1.2)	7		
3	Kol	lektoren (AP 2); ITW	10		
	3.1	Prüfung Kollektoren (AP 2.1)	10		
	3.2	Marktanalyse Kollektoren (AP 2.2)	10		
	3.3	Kostensenkungspotential Kollektor (AP 2.3)	16		
	3.4	Definition Kollektorstandard (AP 2.4)	23		
4	Kol	lektorbefestigung (AP 3); ISE	25		
	4.1	IST-Analyse Montagesystem und Montagefälle (AP 3.1)	25		
	4.2	Auswertung und Bestimmung des Kostensenkungspotenzials (AP 3.2)	25		
	4.3 E	Empirische Belastungsprüfung (AP 3.3)	25		

	4.4 F	Sestlegung von Schnittstellen und Dokumentation (AP 3.4)				
5	Spe	eicher (AP 4); ITW	26			
	5.1	Marktanalyse Speicher (AP 4.1)				
	5.2	Prüfung Speicher (AP 4.2)				
	5.3 4.3 +	Kostensenkungspotential und Definition eines Speicherstandards Spe	her (AP 27			
	5.5	Entwicklung Mikrozirkulationsbremse (AP 4.5)				
6	Reg	gelung (AP 5); ISE	51			
	6.1	Marktanalyse Solarregler (AP 5.1)	51			
	6.2	Prüfung Solarregler (AP 5.2)	51			
	6.3	Kommunikations-Schnittstellen (AP 5.3)	52			
	6.4	Definition eines Solarreglerstandards (AP 5.4)	52			
7	Systemtechnik und Installation (AP 6); ITW53					
	7.1	Systemanalyse (AP 6.1)	53			
	7.2	Anlagenanalyse (AP 6.2)	59			
	7.3	Potentialanalyse (AP 6.3)	66			
	7.4	Systemtechnik-Standards (AP 6.4)	70			
8	Mita 7); I	arbeit in Normungsgremien und Aktivitäten der IEA SH	C (AP			
	8.1	Normungsarbeit (AP 7.1)	76			
	8.2	Mitarbeit IEA SHCTask 54 "Price Reduction of Solar Thermal Systems" (76	(AP 7.2)			
	8.3	Mitarbeit IEA SHC Task 57 "Solar Standards and Certification" (AP 7.3))78			
9	Zus	ammenfassung und Ausblick	80			
10	Dar	nksagung	85			
11	Lite	eraturverzeichnis	86			

Anhang A: Standardisierung in der Solarthermie
Anhang B: Ausschreibung Anschlussset Sonnenkollektoren (Bsp. Flexxibl)
Anhang C: Marktrecherche Speicher99
Anhang D: Ausschreibung Standardspeicher (Bsp. Bruns Heiztechnik)123
Anhang E: Anforderung Mikrozirkulationsbremse
Anhang F: Analyse der Montageanleitungen126
Anhang G: Bericht Montagebegleitung Paradigma145
Anhang H: Bericht Montagebegleitung Solvis154
Anhang I: Bericht Montagebegleitung Citrin166
Anhang J: Bericht Montagebegleitung Weishaupt172
Anhang K: Zusammenfassender Bericht zur Montagebegleitungen
Anhang L: IEA SHC Task 54 Info sheet Levelised Cost of Heat (LCoH)
Anhang M: IEA SHC Task 54 Info sheet Conventional Reference System Germany194
Anhang N: IEA SHC Task 54 Info sheet Reference solar domestic hot water system Germany198
Anhang O: IEA SHC Task 54 Info sheet Reference solar combi system Germany

Nomenklatur

Große lateinische Symbole

Symbol	Einheit	Bezeichnung
$LCoH_{conv,fin}$	€kWh	Wärmepreis der konventionell erzeugten Endenergie
LCoH _{ov,fin}	€kWh	Gesamtwärmepreis
$LCoH_{sol,fin}$	€kWh	solarer Wärmepreis
(UA) _{AN}	W/K	Anschlussverlustkoeffizient
(UA) _{sa}	W/K	Wärmeverlustrate

Kleine lateinische Symbole

Symbol	Einheit	Bezeichnung
f _{sav}	%	anteilige Energieeinsparung
$\mathbf{f}_{\mathrm{sol}}$	%	solarer Deckungsanteil

Kleine griechische Symbole

Symbol	Einheit	Bezeichnung
λ	$W/(m \cdot K)$	Wärmeleitfähigkeit

Nomenklatur

Abkürzungen

Symbol	Bezeichnung
ABS	Acrylnitril-Butadien-Styrol
AG	Aussengewinde
AP	Arbeitspaket
BAFA	Bundesamt für Wirtschaft und Ausfuhrkontrolle
EN	Europäische Norm
EPP	expandierbares Polypropylen
EPS	extrudiertes Polystirol
EU	Europäische Union
IG	Innengewinde
ITW	Institut für Thermodynamik und Wärmetechnik der Universität
LKB	Lamellenkonvektionsbremse
MAG	Membran-Ausdehnungsgefäß
MZB	Mikrozirkulationsbremse
PU	Polyurethan
PTJ	Projektträger Jülich
TPU Flexa 90 A	Thermoplastisches Polyurethan, Shore-Härte 90 A
TZS	Forschungs- und Testzentrum für Solaranlagen des Instituts für Thermodynamik und Wärmetechnik der Universität Stuttgart

Indizes

Symbol	Bezeichnung
conv	konventionell
fin	Endenergie
OV	gesamt
sav	sav – einsparen
sol	solar

1 Einführung

1.1 Motivation und Problemstellung

Die Bundesregierung sieht die Zukunft der Energieversorgung in den unerschöpflichen und klimafreundlichen Energieträgern Wind, Sonne, Wasser und Biomasse [1]. Daher wurden durch den Kabinettsbeschluss vom 6. Juni 2011 folgende Ziele festgelegt:

- Der Anteil erneuerbarer Energien am Endenergieverbrauch soll von rund 9 Prozent im Jahr 2010 auf 60 Prozent im Jahr 2050 anwachsen.
- Der Anteil erneuerbarer Energien an der Stromerzeugung soll bis zum Jahr 2020 mindestens 35 Prozent und bis 2050 mindestens 80 Prozent betragen.
- Der Anteil der aus erneuerbaren Energien erzeugten Wärme am Endenergieverbrauch soll von ca. 9 Prozent im Jahr 2010 auf mindestens 14 Prozent im Jahr 2020 steigen.

Trotz der Ziele und Beschlüsse der Bundesregierung ist der Anteil der erneuerbaren Energien am gesamten Endenergieverbrauch für Wärme im Jahr 2014 gegenüber 2013 nicht weiter angestiegen – er blieb bei 9,9 Prozent [2]; auch im Vergleich zum Jahr 2012 mit einem Anteil von 9,8 Prozent ist die Steigerung von 0,1 Prozent von 2012 auf 2014 viel zu gering um die gesetzten Ziele im vorgegebenen Zeitrahmen zu erreichen.

Ein Grund für die nur sehr geringen Zuwächse im Bereich erneuerbarer Wärmeenergien ist die Tatsache, dass die Wärmeenergie aus solarthermischen Anlagen (in Wohngebäuden) mit einem solaren Wärmepreis zwischen durchschnittlich 16 und 24 ct/kWh [3] im Vergleich zu anderen Wärmeerzeugungstechnologien als zu teuer empfunden wird bzw. ist.

Die anteiligen Netto-Preise einer Standardkombianlage zur solaren Trinkwassererwärmung und Heizungsunterstützung sind in Abbildung 1 dargestellt, wobei die Preise bzw. Kosten in die Kategorien Hersteller, Montage und installierendem Handwerk, Produktverkauf Handwerk und Großhandel aufgegliedert sind.

*Herstellungskosten (Kollektor, Speicher, Solarstation, Regler, MAG, Rohre etc.), HST = Hersteller, FGH = Fachgroβhandel, HW = Handwerk, KO = Kollektor, SP+HW = Speicher und sonst. HW, EBITDA = Operatives Ergebnis (Berechnung auf Basis Vollkosten, nicht auf Basis Differenzinvestment), Quelle: BAFA, ITW, Technomar

Abbildung 1: Anteilige Endkundenpreise einer solaren Kombianlage im Jahr 2011 [2]

Nach Ansicht der Experten des "Fahrplan Solarwärme" ist bis zum Jahr 2030 eine signifikante Kostenreduktion vom fast 50 % möglich (vgl. Tabelle 1).

Das Projekt "KoST" soll durch die Entwicklung standardisierter Komponenten und Schnittstellen einen entscheidenden Beitrag zur Erreichung dieses für die Zukunftsfähigkeit der Solarthermiebranche essenziellen Ziels leisten.

Tabelle 1: Kosten- und Erlösstruktur einer solaren Kombianlage bis 2030 [2]

Basis: 11 m² Kombi-Anlage Flachkollektor, Netto-Preise

ε	2000	2010	2015	2020	2030
HST - КО - НК	1.246	1.154	1.096	865	462
HST - KO - SK + EBITDA	739	684	650	513	274
FGH - KO - SK + EBITDA	659	611	580	458	244
HW - KO - SK + EBITDA	1.758	1.628	1.547	1.221	651
HST - SP + HW - HK	1.304	1.207	1.075	1.286	863
HST - SP + HW - SK + EBITDA	569	527	469	561	377
FGH - SP + HW - SK + EBITDA	625	578	515	616	413
HW - SP + HW - SK + EBITDA	1.665	1.542	1.372	1.642	1.103
HW - MO - SK + EBITDA	1.620	1.500	1.050	975	975
Endpreis (netto)	10.185	9.431	8.353	8.137	5.362

HST = Hersteller, FGH = Fachgroßhandel, HW = Handwerk, KO = Kollektor, SP+HW = Speicher und sonst. HW, MO = Montagekosten, HK = Herstellungskosten, SK+EBITDA = Sonstige Kosten und operatives Ergebnis (Berechnung auf Basis Vollkosten, nicht auf Basis Differenzinvestment), volle Berücksichtigung des Speicherpreises, Quelle: ITW, Technomar

1.2 Stand der Technik und aktuelle Entwicklungen

Der heutige Stand der Technik bei solarthermischen Anlagen zeichnet sich durch eine sehr heterogene, herstellerspezifische Komponenten- und Systemtechnik aus. Fast jeder Marktteilnehmer verwendet unterschiedliche Komponenten, Schnittstellen und Anlagenschemata. Dies resultiert in einem erhöhten Montageaufwand und teilweise mangelhaft installierten Anlagen, da sich das installierende Handwerk immer wieder in die unterschiedlichen Produkte einarbeiten will und sich nicht die notwendige Routine für eine schnelle und effektive Montage aneignen kann, was die Voraussetzung für eine schnelle, effiziente und fehlerfreie Installation ist.

Als Beispiel ist die Heterogenität der am Markt angebotenen Kollektoren in Abbildung 2 für 111 Standardflachkollektoren aus Deutschland, Österreich und der Schweiz mit eine Bruttofläche zwischen 2.0 und 2.6 m² die Längen und Breiten dargestellt.

Abbildung 2: Länge und Breite von 111 Standardkollektoren aus Deutschland, Österreich und der Schweiz (D/A/CH)

Ähnlich viele Varianten sind bei der Ausführung der Kollektoranschlüsse zu beobachten. Hier bestehen z. B. Unterscheide in der Anzahl, (2 oder 4), im Querschnitt (12 mm, 15 mm, 18 mm, 22 mm, etc.) und in der Ausführung (Kupferrohr, Verschraubung (flach und konisch), Klemmring, Steckverbindung).

Ein weiteres Beispiel lässt sich aus dem Bereich der Befestigungs- und Montagesysteme aufzeigen: Hier ist der Markt von einer breiten Differenzierung beherrscht. Nahezu jeder Kollektorhersteller entwickelt spezifisch für seine Kollektortypen ein eigenes Kollektorbefestigungs- und Montagesystem, wenn auch die Komponenten teilweise sehr ähnlich sind. Oft bestimmt dabei die individuell gestaltete Gehäusekante des Kollektors die Anforderung an die Ausführung der spezifischen Kollektorbefestigungen oder der Montageschienen. Dies macht eine Kompatibilität zu Montagesystemen anderer Hersteller fast unmöglich. Zudem erhöht es insgesamt den Aufwand für Installateure das spezifische Fachwissen bzgl. unterschiedlichster Montage- und Befestigungssysteme bereitzuhalten. Das Einsparpotential durch eine Standardisierung bzw. Vereinheitlichung des Kollektormontagesystems und dessen Montage ist hier vergleichbar hoch, da die Kosten für Montage- und Befestigungselemente inkl. Montagearbeit einen Anteil rund 20 % an den Gesamtkosten ausmachen [4]

Gleiches gilt für Solarregler, Speicher, Hydraulikschemata und Rohrleitungen sowie Auslegungsrichtlinien in den Produktanleitungen.

Die bisherigen Bemühungen der Solarthermiefirmen in Bezug auf eine Kostenreduktion der Solaranlagen bestand und besteht im Wesentlichen in der Reduktion der Herstellungskosten der einzelnen Komponenten. So wurden und werden in den vergangenen Jahren Materialen substituiert, der Materialeinsatz verringert und die individuellen Fertigungsprozessen weiter verbessert. Beispiele hierfür sind der fast vollständige Ersatz der Kupfer-Absorberblechen durch Aluminium, die Reduktion der Wandstärken der Registerrohre von 1 mm auf zwischenzeitlich bis zu 0.4 mm sowie die Reduktion der Glasstärke von 4 mm auf 3.2 mm. Auch wenn diese Maßnahmen durchaus zur Kosteneinsparung beitrugen und tragen konnte dadurch keine signifikante Reduktion des solaren Wärmepreises erzielt werden da die Kostenreduktion meist auf eine Komponente des Gesamtsystems beschränkt bliebt und das Zusammenspiel der einzelnen Komponenten des Gesamtsystems nicht berücksichtigt wird. Auch wurden bisher keine firmenübergreifenden Maßnahmen wie beispielsweise die Einführung von Plattformen analog zur Automobilindustrie ergriffen um die Gesamtkosten zu reduzieren.

Anders als in der Photovoltaik, wo bereits ein gewisser Standard in Größe und Schnittstellen umgesetzt wurde oder in der IT-Branche, in der u.a. die Standardisierung wie z. B. die USB-Schnittstelle, Bildschirmmaße, Software, Festplattenmaße etc. erst die enorme Kostendegradation ermöglichte, ist diese Standardisierung von Komponenten und Schnittstellen in der Solarthermie bisher noch nicht üblich.

Daher setzt das Vorhaben "KoST" insbesondere bei diesem Aspekt mit dem Ziel an, durch die Standardisierung von Komponenten und Schnittstellen eine deutliche Kostenreduktion zu erreichen. Um dieses zentrale Projektziel zu erreichen, wurde ein Konsortium aus Industrie, Verbänden und wissenschaftlichen Institutionen gebildet, das transdisziplinär zusammenarbeiten wird.

1.3 Zielsetzung und Aufbau

Das übergeordnete Ziel des Verbundforschungsvorhabens "KoST" ist die Reduzierung des solaren Wärmepreises von derzeit 16 bis 24 ct/kWh um ca. 40 % zur Steigerung der Wettbewerbsfähigkeit der Solarthermie gegenüber anderen Wärmeerzeugungstechnologien.

Erreicht werden soll dieses Ziel im Wesentlichen durch folgende drei Maßnahmen:

- 1. Die Standardisierung der Komponenten (Kollektoren, Speicher, Regelungen, Montagesysteme) reduziert die Komplexität von Komponenten und Anschlüssen und ermöglicht zusätzliche Vertriebswege über weitere Branchen, wie Dachdecker, Fensterbauer oder Zimmerleute, die nun in der Lage sind, Solarwärmeanlagen zu installieren. Dies führt zu einer Kostenreduktion durch mehr Wettbewerb. Zudem können Bauteile dann herstellerübergreifend kombiniert werden, d. h. die qualitativ besten und günstigsten Produkte setzen sich durch und nicht diejenigen, die der Installateur vertreibt bzw. vertreiben muss, da er nur für diese über entsprechendes Montagematerial und Fachwissen verfügt. Der Kunde kann daher individuell zwischen einer Vielzahl von am Markt angebotenen Produkten auswählen und zusätzlich werden Erweiterungen und Nachrüstungen vereinfacht. Dies führt sowohl zu einer Kostenreduktion durch die Erhöhung der Kombinationsmöglichkeiten und des damit verbundenen Wettbewerbs, als auch zu einem verstärkten Einsatz von solarthermischen Komponenten und Anlagen.
- 2. Die Ausweitung der Massenproduktion durch gezielte Verwendung von standardisierte sogenannten B- und C-Teilen aufgrund von Skalierungseffekten, engl. "Economies of scale". Diese führt zu einer Kostenreduktion der Hauptkomponenten Kollektor und Speicher sowie des für die Installation benötigten Montagezubehörs.
- 3. Durch die Standardisierung der Installation im Hinblick auf hydraulische, mechanischen und elektrische Schnittstellen zwischen den einzelnen Komponenten, Montageanleitungen, Wärmedämmung und Hydraulikschemata können Solarwärmeanlagen durch Installateure einfacher und schneller angeschlossen werden, da weniger herstellerspezifisches Fachwissen erforderlich ist. Dies führt neben der Reduktion durch Zeitersparnis bzw. durch die

Verringerung der Installationskosten auch zu einer Vermeidung von Installationsfehlern. Durch die Standardisierung der Installation sowie der einzelnen Anlagenkomponenten sind Wartungen, Reparaturen und eventuelle Nachrüstungen einfacher durchzuführen wodurch wiederum die Kosten reduziert werden.

Alle drei vorgenannten Maßnahmen führen zudem zu einer Steigerung der thermischen Leistungsfähigkeit der Solaranlage durch die Vermeidung von Installationsdefiziten und zu einer höheren Kundenzufriedenheit. Dies betrifft sowohl den Handwerker aufgrund einer einfacheren Montage, u. a. durch eine standardisierte Montageanleitung mit Empfehlungen zur Ergonomie und zur Optimierung der Montagearbeiten bzw. des Material- und Werkzeugeinsatzes, als auch den Endkunden durch eine fehlerfrei arbeitende Solaranlage und Regelungen mit Mindestregelfunktionen und intuitiver Benutzerführung, die zu einem positiven Benutzungserlebnis führen.

Um die zur Erreichung des zentralen Projektziels notwendigen Einzelmaßnahmen zielführend umzusetzen, basiert das Gesamtvorhaben auf einem transdisziplinären Ansatz. Die zentralen Fragestellungen werden daher in enger Abstimmung und Mitarbeit der Hersteller von Komplettanlagen sowie einzelner Komponenten als Industrieprojektpartner und der für die Solarthermie relevanten Verbände als Projektbegleitung federführend von den drei Verbundprojektpartnern, ITW, ISE und IAO bearbeitet. Die wesentlichen Elemente und Ergebnisse des Projekts sind:

- Analyse der Montagevorgänge und Ableitung von Kosteneinsparpotentiale durch standardisierte Komponenten und optimierte Montagevorgänge.
- Empfehlung für eine Standardisierung bzw. Vereinheitlichung der Kollektoren
- Empfehlung für eine Standardisierung bzw. Vereinheitlichung des Kollektormontagesystems und dessen Montage
- Empfehlung für eine Standardisierung bzw. Vereinheitlichung der Speicher
- Entwicklung eines steckbaren Speicheranschlusses mit Mikrozirkulationsbremse
- Empfehlung für eine Standardisierung bzw. Vereinheitlichung der Anschlüsse und Schnittstellen sowie des Mindestfunktionsumfangs von Regelungen
- Empfehlung für eine Standardisierung bzw. Vereinheitlichung der Systemtechnik und Anlageninstallation
- Ableitung der Kostenersparnis durch die Umsetzung der Standardisierungsempfehlungen

In diesem Abschlussbericht werden die wesentlichen innerhalb des Forschungsprojekts durchgeführten Arbeiten beschrieben und die daraus resultierenden Ergebnisse und Erkenntnisse vorgestellt und diskutiert.

Im auf diese Einführung folgenden Kapitel 2 werden die für das Vorhaben notwendigen Arbeiten zur Projektkoordination beschrieben und dargestellt welche Öffentlichkeitsarbeit betrieben wurde. Aus dem hier beschriebenen Forschungsprojekt gingen zahlreiche Vorträge und Veröffentlichungen auf nationalen und internationalen Tagungen und Konferenzen hervor. Diese sind ebenfalls in Kapitel 2 aufgeführt. In Kapitel 3 werden die Ergebnisse der umfangreichen Marktanalyse zu solarthermischen Kollektoren, das mögliche Kostensenkungspotential und der im Projekt entwickelte Standard-flachkollektor vorgestellt.

Das Kapitel 4 verweist auf die Arbeiten des Fraunhofer ISE zu den Kollektorbefestigungen die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.

Kapitel 5 beschreibt die Ergebnisse der Marktanalyse zu Solarspeichern und der daraus abgeleiteten Standards für bivalente Warmwasser- und Kombispeicher.

In Kapitel 6 wird auf die am ITW/IGTE durchgeführten Messungen an Solarreglern eingegangen sowie auf die weiteren Untersuchungen des Fraunhofer ISE durchgeführten Arbeiten verwiesen [5].

In Kapitel 7 wird die Systemanalyse an gesamten Solaranlagen beschrieben. Des Weiteren sind die Ergebnisse der Anlagenanalyse auf Basis der Begutachtung von bestehenden Anlagen aufgeführt sowie die Analyse und Potentiale bei der Montage von thermischen Solaranlagen dargestellt.

Kapitel 8 beschreibt die im Rahmen des Projekts durchgeführte Normenarbeit sowie die in den IEA SHC Task 54 "Price Reduction of Solar Thermal Systems" und Task 57 "Solar Standards and Certification" geleistete Arbeit.

Kapitel 9 fasst die Inhalte und Ergebnisse des Forschungsprojektes zusammen und gibt einen Ausblick auf mögliche zukünftige Arbeitspunkte.

2 Projektkoordination und Öffentlichkeitsarbeit (AP 1); ITW

2.1 Projektkoordination (AP 1.1)

Für die ordnungsgemäße und erfolgreiche Durchführung des Projekts wurden die erreichten Projektziele in regelmäßigen Abständen mit den Projektplanungen verglichen und bei Bedarf die notwendigen Korrekturmaßnahmen eingeleitet. Dazu wurden gemeinsame Projekttreffen mit den Industriepartnern und dem Fraunhofer ISE durchgeführt. Die projektspezifischen Arbeiten und Vorgehensweisen mit den beiden Kooperationspartnern des Forschungsvorhabens (Fraunhofer ISE, ITW/IGTE) wurden abgestimmt und koordiniert. Die Koordination des Projektes erfolgte durch das ITW/IGTE.

Während der Projektlaufzeit wurden 7 Projekttreffen und 2 Standardisierungsworkshops durchgeführt:

- 1. Projekttreffen, 19.04.16, Kloster Banz, Bad Staffelstein
- 2. Projekttreffen, 05.10.16, Stuttgart
- 3. Projekttreffen, 20. und 21.06.2017, Stuttgart
- 4. Projekttreffen, 14.11.2017, Freiburg,
- 5. Projekttreffen, 13. und 14.03.2018, Stuttgart
- 6. Projekttreffen, 9.10.2018, Braunschweig
- 7. Projekttreffen, 20.03.2019, Stuttgart

Zusätzlich wurde am 06.02.2018 ein Arbeitstreffen zur Festlegung des Standardflachkollektors in Stuttgart durchgeführt. Teilnehmer waren die Kollektorhersteller sowie Vertreter von ISE, IAO und ITW

Des Weiteren wurde die Firmen Citrin Solar GmbH am 15.09.2016 und KBB Kollektorbau GmbH am 01.12.2016 zu Projektbesprechungen besucht. Die Besuche dienten primär zur Besichtigung der Kollektorproduktionen um die einzelnen Fertigungsmethoden und Prozessschritte detailliert kennenzulernen. Diese Kenntnis war notwendig, um eventuelle Einsparpotenziale in der Fertigung zu identifizieren. Des Weiteren wurden Möglichkeiten zur Standardisierung der Kollektoren sowie die daraus resultierenden Auswirkungen auf die Fertigungsmethoden und Prozessschritte diskutiert und die Auswahl der in AP 2.1 zu prüfenden Kollektoren konkretisiert.

2.2 Öffentlichkeitsarbeit (AP 1.2)

Die in AP 1.2 durchgeführte Öffentlichkeitsarbeit erfolgte in der klassischen Weise mittels wissenschaftlicher Beiträge auf Tagungen und Kongressen sowie durch Fachveröffentlichungen und Präsentationen in Normungsgremien. Des Weiteren wurde die Fachöffentlichkeit wie Hersteller und Installateure von solarthermischen Anlagen und deren Komponenten frühzeitig in den Prozess der Standardisierung einbezogen, um eine breite Akzeptanz der Projektergebnisse zu gewährleisten und um die herstellerspezifischen Anforderungen im Laufe des Projekts entsprechend berücksichtigen zu können. Zu diesem Zweck wurden Informationsund Industrieworkshops durchgeführt.

Um Synergieeffekte zu nutzen und einen inhaltlichen Wissenstransfer zu gewährleisten erfolgte die Organisation und Durchführung der Informations- und Industrieworkshops in enger Absprache mit dem Projektleiter des Projekts "Technisch-wissenschaftliche Optimierung von solarthermischen Kombianlagen" (TeWiSol) des Fraunhofer ISE.

2.2.1 Informations- und Industrieworkshops

Folgende Informations- und Industrieworkshops wurden während der Laufzeit des Projekts durchgeführt:

- Branchenworkshop zum Thema "Kosten in der Solarthermie" mit Vorstellung des Projekts KoST sowie dem vom Fraunhofer ISE durchgeführten Projekt TEWIsol "Technisch-wissenschaftliche Optimierung von solarthermischen Kombianlagen", 05.10.2016, Stuttgart
- 2) Standardisierungsworkshop, 20.07.2017, Stuttgart
- 3) Standardisierungsworkshop, 13.03.2018, Stuttgart
- 4) Industrieworkshop zum Thema "Kostenreduzierung und Qualitätssicherung" mit der Abschlusspräsentation "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen Projekt KoST"

2.2.2 Publikation der Ergebnisse in Konferenzbeiträgen

Folgende Beiträge wurden in der Projektlaufzeit geleistet, um über das Thema Kostenreduktion in der Solarthermie sowie über die erzielten Projektergebnisse zu informieren. Hierbei handelt sich um deutsche Vorträge, Poster und schriftliche Veröffentlichungen bzw. Konferenzbeiträge:

- Stephan Fischer, Stephan Bachmann, Markus Gerschitzka, Harald Drück, Neue Ansätze zur Kostenreduzierung von solarthermischen Systemen - Erste Ergebnisse des Forschungsprojekts "KoST", 27. OTTI Symposium thermische Solarenergie, Kloster Banz, Bad Staffelstein, 2017, Erhältlich über Energiefachbuchhandel Dr. Peter Wichmann, <u>www.energiefachbuchhandel.de</u>
- 2) Wolfgang Kramer, Stephan Fischer, Frederic Diels, Axel Oliva, Neue Ansätze zur Kostenreduzierung von solarthermischen Systemen, Erhältlich über Energiefachbuchhandel Dr. Peter Wichmann, <u>www.energiefachbuchhandel.de</u>
- Stephan Fischer, Harald Drück, Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen – Zwischenergebnisse des Projekts "KoST", Symposium Solarenergie, Kloster Banz, Bad Staffelstein. Tagungsband zum Symposium Solarthermie, Conexio GmbH, Pforzheim, 2018
- 4) S. Bachmann, S. Fischer, H. Drück, Vorstellung der im Projekt KoST entwickelten Standards für Kollektoren und bivalente Trinkwasserspeicher, Tagungsband zum Symposium Solarthermie, Conexio GmbH, Pforzheim, 2018
- S. Bachmann, S. Fischer, H. Drück, Reduktion des solaren Wärmepreises durch Leistungssteigerung der Solaranlage, Tagungsband zum Symposium Solarthermie und innovative Wärmesysteme, Kurzfassung Seiten 63 - 64, Conexio GmbH, Pforzheim, 2019, ISBN 978-3-948176-05-1
- 6) Stephan Fischer, Stephan Bachmann, Bert Schiebler, Federico Giovannetti, Michael Köhl, 40 % Reduktion des solaren Wärmepreises durch die Kombination unterschiedlicher Optimierungsmaßnahmen, Tagungsband zum Symposium Solarthermie und innovative Wärmesysteme, Conexio GmbH, Pforzheim, 2019, ISBN 978-3-948176-05-1

2.2.3 Sonstige Publikationen

Am 07.12.2016 wurde auf http://www.bine.info/nc/newsuebersicht/news/solarthermie-im-kostencheck/ das Projekt KoST sowie das vom Fraunhofer ISE durchgeführte Projekt TEWIsol vorgestellt.

3 Kollektoren (AP 2); ITW

3.1 Prüfung Kollektoren (AP 2.1)

In AP2.1 (Prüfung Kollektoren) wurden während der Projektlaufzeit insgesamt 13 Sonnenkollektoren der Projektpartner einer thermischen Leistungsprüfung und teilweise auch einer Dauerhaftigkeits- und Zuverlässigkeitsprüfung nach EN ISO 9806:2013 unterzogen. Die Leistungsdaten der Prüfungen sowie weitere am ITW/TZS bereits verfügbare Daten wurden mit dem Ziel analysiert daraus abzuleiten, welche Bauformen und Technologien welche Leistungsfähigkeit aufweisen.

Die Analyse ist in Abschnitt 3.1 zusammengefasst.

3.2 Marktanalyse Kollektoren (AP 2.2)

Auf Grundlagen der am Forschungs- und Testzentrum für Solaranlagen Stuttgart (TZS) des Instituts für Thermodynamik und Wärmetechnik bzw. dem Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung der Universität Stuttgart nach ISO 9806 durchgeführten Kollektorprüfungen sowie der in Abschnitt 3.1 durchgeführten Prüfungen wurde eine Datenbank aufgebaut. Diese wurde durch Informationen der Solar Keymark Datenblätter ergänzt. Die Datenbank diente dann als Grundlage für die Analyse um abzuleiten, welche Bauform und Technologien welche thermische Leistungsfähigkeit aufweisen.

Die anschließende Marktanalyse wurde durchgeführt und zum 1. Standardisierungs¬workshop am 20.6.2017 vorgestellt. Analysiert wurden die auf dem Markt verfügbaren Flachkollektoren mit dem Ziel der Definition von Standards im Hinblick auf die im folgenden Kriterien: Größe, Art und Position der hydraulischen Anschlüsse, Montageart der Temperaturfühler und mechanische Schnittstellen zur Kollektorbefestigung. Als Datengrundlage dienten 254 Flachkollektoren mit Solar Keymark Zertifizierung aus den Ländern Deutschland, Österreich und Schweiz (D / A / CH). Als Leistungskriterium wurden die mit der Software SCEnOCalc berechneten Jahresenergieerträge am Standort Würzburg bei einer mittleren Fluidtemperatur von 50 °C aus dem Solar Keymark Datenblatt herangezogen.

Insgesamt wurden 254 Kollektoren, 94 in waagerechter und 160 in senkrechter Ausführung analysiert. Abbildung 3 zeigt die Bruttokollektorfläche der analysierten Kollektoren. Der größte Anteil (83 %) der Kollektoren besitzen eine Bruttokollektorfläche zwischen 1,8 und 2,9 m². Da eine zukünftige Standardgröße sicherlich in diesem Bereich angesiedelt ist wurde im Folgenden nur dieser weiter analysiert. Die Bruttokollektorfläche der verbleibenden 212 Kollektoren, 54 in waagerechter und 158 in senkrechter Ausführung zeigt Abbildung 4.

Abbildung 3: Bruttokollektorfläche von 254 Kollektoren aus den Ländern Deutschland, Österreich und Schweiz

Abbildung 4: Bruttokollektorfläche der 212 Kollektoren mit einer Bruttokollektorfläche zwischen 1,8 und 2,9 m²

In Abbildung 5 ist die Häufigkeitsverteilung der Bruttokollektorfläche der 212 Kollektoren dargestellt. Ersichtlich ist, dass sich ca. 2/3 der Kollektorflächen in den Bereichen von 2.0 bis 2.1 m² (18%) und 2.5 bis 2.6 m² (48%) befinden.

Abbildung 5: Häufigkeitsverteilung der Bruttokollektorfläche der 212 Kollektoren mit einer Bruttokollektorfläche zwischen 1,8 und 2,9 m²

In Abbildung 6 und Abbildung 7 ist der Einfluss der Kollektorbruttofläche und der Kollektorhöhe auf den jährlichen Kollektorertrag dargestellt.

Abbildung 6: Einfluss der Kollektorbruttofläche auf den jährlichen Kollektorertrag

Abbildung 7: Einfluss der Kollektorhöhe auf den jährlichen Kollektorertrag

In Abbildung 6 und Abbildung 7 ist der Einfluss der Kollektorbruttofläche und der Kollektorhöhe auf den jährlichen Kollektorertrag dargestellt. Zu erkennen ist, dass der jährliche Kollektorertrag mit steigender Kollektorfläche, bedingt durch die Verringerung der Randverluste, und steigender Kollektor Höhe, bedingt durch eine dickere rückwärtige Wärmedämmung, steigt. Der Anstieg ist jedoch gering ausgeprägt da andere Konstruktionsmerkmale sowie die Güte der Komponenten sowie die Qualität der Verarbeitung einen höheren Einfluss auf den jährlichen Kollektorertrag haben.

Abbildung 8 zeigt den Anteil der Anzahl der Kollektoranschlüsse und Abbildung 9 den Anteil der Position der Kollektoranschlüsse.

Abbildung 8: Anteil der Anzahl der Kollektoranschlüsse

56 % der untersuchten Kollektoren besitzen 4 Anschlüsse und 44 % 2 Anschlüsse. 81 % der Anschlüsse sind seitlich und 19 % oben angebracht. Ein Einfluss der Anzahl und Position der Anschlüsse auf den jährlichen Kollektorertrag konnte nicht festgestellt werden.

Abbildung 9: Anteil der Position der Kollektoranschlüsse

Abbildung 10 Zeigt die Verteilung der Anschlussverrohrung der Kollektoren und Abbildung 11 die Verteilung der Ausführung der Anschlüsse.

Abbildung 10: Verteilung der Anschlussverrohrung

Die Anschlüsse waren zu 54 % auf 18 mm Kupferrohr, zu 37 % auf 22 mm Kupferrohr und zu 9 % auf 12 mm Kupferrohr angebracht. Die Anschlüsse unterteilen sich in 31 % Schnellverbinder (Steckverbindungen), 24 % 1" Außengewinde (AG) oder Innengewinde (IG),

23 % blankes Kupferrohr, 19 % ³/₄" AG/IG und 3 % ¹/₂"AG. Ein Einfluss der Ausführung der Anschlüsse auf den jährlichen Kollektorertrag konnte nicht festgestellt werden.

Abbildung 11: Verteilung der Anschlussausführung

Abbildung 12 zeigt die Verteilung der Ausführung der Tauchhülse des Kollektortemperaturfühlers. 56 % der untersuchten Kollektoren besitzen keine Tauchhülse für einen Kollektorfühler, 21 % besitzen eine am Absorber oben links, 12 % oben rechts und 11 % eine beidseitige Tauchhülse. Der Innendurchmesser der Tauchhülse unterteilt sich in 7 mm (59 %), 7.2 mm (24 %) und 6.4 mm (18 %). Ein Einfluss der Ausführung Tauchhülse des Kollektortemperaturfühlers auf den jährlichen Kollektorertrag konnte nicht festgestellt werden.

Abbildung 12: Verteilung der Tauchhülsen für Kollektortemperaturfühler

Abbildung 13 zeigt die Verteilung der Ausführung der mechanischen Schnittstelle zum Montagesystem:

Die Schnittstelle vom Kollektor zum Montagesystem wird zu 73 % als seitlich umlaufende Nut, zu 19 % als Innengewinde im Kollektorgehäuse und zu 8 % als untenliegende umlaufende Nut ausgeführt. Ein Einfluss der Ausführung der Schnittstelle zum Montagesystem auf den jährlichen Kollektorertrag konnte ebenfalls nicht festgestellt werden.

Abbildung 13: Verteilung der Ausführung der mechanischen Schnittstelle zum Montagesystem

3.3 Kostensenkungspotential Kollektor (AP 2.3)

Im AP2.3 (Kostensenkungspotential Kollektor) wurden auf der Grundlage von AP2.1 und AP2.2 mögliche Szenarien zur Standardisierung der Kollektoren erarbeitet und deren Kostenreduktionspotential analysiert und quantifiziert. Dies erfolgte auf Basis der durch die Hersteller zur Verfügung gestellten Kostendaten.

Um eine Bezugsgröße für die zu reduzierenden Produktionskosten zu erhalten wurden von folgenden Firmen die mittleren Produktionskosten für einen 2.5 m² Flachkollektor bereitgestellt:

- KBB (Produktionsstätte Deutschland)
- Greenontec (Produktionsstätte Österreich)
- Viessmann (Produktionsstätte Frankreich)
- Ernst Schweizer Metall bau (Produktionsstätte Schweiz)

Als mittlere Produktionskosten wurden aus diesen Daten ein Wert von 68 €m² bestimmt. Die prozentuale Aufteilung der Produktionskosten in Material-, Lohn- und Gemeinkosten sind in Abbildung 14 dargestellt. Hierbei stellen die Materialkosten mit 70 % gegenüber jeweils 15 % für Lohn- und Gemeinkosten den größten Posten dar. Die prozentuale Aufteilung der

Materialkosten ist in Abbildung 15 dargestellt. Hier ist zu erkennen, dass die metallischen Werkstoffe nahezu 2/3 der Materialkosten ausmachen.

Abbildung 14: Durchschnittliche prozentuale Aufteilung der Produktionskosten eines Flachkollektors

Abbildung 15: Durchschnittliche prozentuale Aufteilung der Materialkosten eines Flachkollektors

Tabelle 2 zeigt die Aufteilung der Herstellkosten eines Standardflachkollektors mit einer Bruttofläche von 2.5 m² als Mittelwerte der Angaben der 4 Kollektorherstellern.

Tabelle 2: Aufteilung der Herstell	kosten eines Standardflad	chkollektors mit einer	Bruttofläche
von 2.5 m ²			

Auflistung Fertigungsmaterial		in %
Aluminium Absorberblech	24 €	14%
Kupferrohre	19€	11%
Rahmen und Gehäusekleinteile	34 €	20%
Wärmedämmung	7€	4%
Solarglas	19€	11%
Abdichtungen	8€	5%
Kleinteile	6€	4%
Kollektoreinzelverpackung (ohne Palette, etc.)	3€	2%
Summe Fertigungsmaterial	120 €	70%
Auflistung Fertigungslöhne		
Rohrbearbeitung	4€	2.3%
Absorber lasern	5€	3.0%
Kollektormontage	16€	9.6%
Summe Fertigungslöhne	26 €	14.9%
Auflistung Selbstkosten		
Fertigungsmaterial	120 €	69.9%
Materialgemeinkosten	8€	4.4%
Summe Materialkosten	127 €	74.3%
Fertigungslöhne	26 €	14.9%
Fertigungsgemeinkosten	19€	10.8%
Summe Fertigungskosten	44 €	25.7%
Summe Herstellkosten	171 €	100.0%
Summe Selbstkosten pro Stück	171 €	100.0%
Summe Selbstkosten pro m ² Bruttofläche	68 €	100.0 %

Auf der Basis der Ergebnisse von AP 2.1 und AP 2.2 sowie der Diskussionen auf dem 1. Standardisierungsworkshop wurde ein erster Vorschlag für einen Kollektorstandard erarbeitet. Die wesentlichen Eigenschaften sind in Tabelle 3 zusammengefasst.

Merkmal	Größe	Bemerkung	
Bruttokollektor- fläche [m²]	2.60	Größe für Handwerk bekannt und beherrschbar	
Kollektorbreite [mm]	1300	Verwendung der max. Absorberblechbreite (1250 mm) möglich, kein Spalten notwendig, geringste Kosten für Absorberblech	
Länge [mm]	2000	ergibt sich aus Fläche und Breite, beste Ausnutzung der Rohglasscheiben. Glasverschnitt ca. 3.6 m ² entspricht 19 % (bei Rohmass 6 x 3.2 m), bessere Ausnutzung als bei der Mehrzahl der andern Kollektormaße	
Dicke [mm]	80	Materialersparnis beim Rahmen und gute Kollektorerträge möglich	
Anzahl Anschlüsse	4	größte Flexibilität bei hydraulischer Verschaltung	
Ausführung der Anschlüsse	steckbar in 18 mm Cu- Rohr	Installationsfreundlich, höchste Verbreitung, weniger Material als 22 mm	
Tauchhülse Temperaturfühler	keine	Wird in steckbarem Anschluss integriert	
Schnittstelle Montagesystem	Umlaufende Nut	Schnittstelle mit der höchsten Verbreitung	

Tabelle 3: Eigenschaften des ersten Vorschlags eines Standardflachkollektors

Um Vor- und Nachteile des vorgeschlagenen Standardflachkollektors und Risiken abzuschätzen wurden die Projektpartner gebeten folgende Informationen innerhalb ihrer Firmen zu recherchieren und bereitstellen:

- gegenwärtige Standardlagerung (Art, Platzbedarf, etc..) und Standardtransport.
- Rohmaße Glasscheiben der Lieferanten
- Intern prüfen ob das Kollektormaß möglich ist in Bezug auf
- - Kundenakzeptanz
- - Vorlieferanten
- - Lagerhaltung
- - Transport
- Kalkulation/Abschätzung der Herstellkosten des Standardkollektors und Vergleich zu bisherigen "2.5 m² Kollektor" als Referenz (100 %)
- Interne Bewertung des Vorschlags "Standardflachkollektor"

- Montagefähigkeit
- Höhe der Umstellungskosten (inkl. Rahmenprofil/Nut)
- Vorschlag für hydraulische Standardverschaltung Kollektorfeld / Möglichkeiten Verschaltung Kollektorfeld
- Gegenwärtig verwendete Steckverbindungen

Die Analyse der Rückmeldungen der Kollektorhersteller zu den o.g. Themen. ergab, dass der Vorschlag des in Tabelle 1 spezifizierten Standardflachkollektors grundsätzlich für gut befunden wurde, aber aufgrund der besonderen Abmessungen bei mindestens einem Projektteilnehmer ohne signifikante Investitionskosten im 6-stelligen Bereich nicht gefertigt werden kann.

Bei Anpassung der Abmessungen des oben vorgestellten standardisierten Konzepts und unter der Voraussetzung eines hohen Automatisierungsgrad der Produktion sowie eine jährliche Produktion von ca. 100.000 m² Kollektorfläche kann der genannte Wert von 68 €m² auf ca. 52 €m² bzw. um ca. 25 % reduziert werden.

Um einen möglichst einheitlichen Standard für die hydraulischen Kollektorverbinder (vgl. Abbildung 16) und dazugehörigen Kollektormontageklemmen zu definieren, sollten folgende Maße standardisiert werden, s. auch Abbildung 17:

- 1. Die Länge der Aufweitung im Sammelrohr zur Aufnahme des steckbaren Kollektorverbinders
- 2. Der Kragendurchmesser der Aufweitung
- 3. Der Abstand zwischen den Kollektoranschlüssen direkt benachbarter Kollektoren
- 4. Der Fußabstand zweier direkt benachbarter Kollektoren

Abbildung 16: Unterschiedliche Kollektorverbinder

In Tabelle 3 sind die entsprechenden 4 Maße für die Kollektoren der am Vorhaben KoST beteiligten Kollektorhersteller zusammengefasst.

Abbildung 17: Relevante Maße für die Standardisierung der steckbaren hydraulischen Kollektorverbinder und der dazugehörigen Montageklemmen

	Länge der Aufweitung [mm]	Kragen- durchmesser [mm]	Abstand zwischen Anschlüssen (senkrechter Kollektor) [mm]	Fußabstand (senkrechter Kollektor) [mm]
Citrin	36.9	29.7	32.5	52.5
Ernst Schweizer	-	24.2	65	68
Greenonetec	27	28	55	78
KBB	38	27	45	75/90
Solvis	30	30	24.2	30

Tabelle 4: Übersicht der 4 relevanten Maße für die Standardisierung der steckbaren hydraulischen Kollektorverbinder und der dazugehörigen Montageklemmen

Um abschätzen zu können welche Kosteneinsparung bei der Standardisierung des Anschlusssets für eine Solaranlage zur Trinkwassererwärmung mit 2 Kollektoren á 2.5 m² möglich ist, wurde vorab ein Hersteller für ein Montageset bestehend aus den folgenden Einzelkomponenten angefragt:

- 1 x 1 m Schlauch (blankes Rohr mit Sechskant für Klemmringanschluss) + Eckstück + O-Ring-Stutzen + Wärmedämmung + Klammer (Variante A)
- 1 x 1 m Schlauch (blankes Rohr mit Sechskant für Klemmringanschluss) + Eckstück mit Fühler-Aufnahme + Zugentlastung (PG-Verschraubung) + O-Ring Stutzen + Wärmedämmung + Klammer (Variante B)
- x Kompensator mit beidseitig O-Ring Stutzen + Wärmedämmung + Klammern (Variante C)
- x Stopfen mit O-Ringen + Klammern (Variante D)
- Alle Teile sind mit Schutzkappe versehen
- 1 x Verpackung in Folie + Artikelaufkleber für das Set

Die Ergebnisse der Abfrage sind in Tabelle 5 als prozentuale Abschätzungen des Herstellers zusammengefasst. Die Abschätzungen beruhen darauf, dass statt 1.000 Sets/a eine Menge von 20.000 Sets/a abgenommen wird.

Berücksichtigt dabei sind

- Feste Abnahmemengen und definierte Zeiträume
- Forecast, der laufend aktualisiert wird
- Über und Unterlieferungen sind erlaubt

Tabelle 5: Relative Kostenreduktion eines Kollektormontagesets für eine solare Trinkwasseranlage mit 2 Kollektoren á 2.5 m²

		rel. Reduktion	rel. Reduktion	rel. Reduktion
	1000 Stk./a	aufgrund Menge + ''Normteile'' 20.000 Stk./a	zusätzlich: reduziert: Verzicht auf PG- Zugentlastung	zusätzlich reduziert: Verzicht auf Wärmedämmung
Basis	100,0%	11,7%	2,2%	7,3%
Set	100,0%	88,3%	86,0%	78,7%
Variante A ¹	25,4%	24,7%	24,7%	21,6%
Variante B	33,0%	31,7%	29,5%	26,4%
Variante C + D	30,8%	23,0%	23,0%	22,0%

In einem nächsten Schritt wurde ein Standard für das Montageset von den Mitarbeitern des IGTE erarbeitet (s. 3.4 Definition Kollektorstandard (AP 2.4)) und mit den Kollektorherstellern abgestimmt. Dieser abgestimmte Standard wurde dann ausgeschrieben um die Kosten

¹ s. Auflistung der Bestandteile des Montagesets

für unterschiedliche jährliche Stückzahlen zu ermitteln. Die Preisanfrage (Anhang B: Ausschreibung Anschlussset Sonnenkollektoren (Bsp. Flexxibl)) wurde an die folgenden Hersteller versandt:

- Flexxibl GmbH
- Waterway GmbH
- SOLAR METAL FLEX GmbH
- Senior Flexonics GmbH
- KuzuFlex GmbH
- Witzenmann GmbH
- Bemoflex Berghöfer GmbH
- BOA Metal Solutions GmbH

Bis Projektende wurde lediglich eine Anfrage mit einem Preisangebot beantwortet. Die Kostenersparnis betrug hier bei einer Stückzahl von 100.000 5% gegenüber Stückzahlen von 1.000 und 10.000. Die relativ niedrige Ersparnis, auch im Vergleich zu den in Tabelle 5 angegebenen Werten und der Fakt, dass die anderen Hersteller nicht angeboten haben legt nahe, dass aufgrund der "hypothetischen" Anfrage die Hersteller nicht die wirklich zu erwartenden Kosten angegeben haben.

3.4 Definition Kollektorstandard (AP 2.4)

Auf Grundlage der durchgeführten Untersuchungen wurde der in Tabelle 6 beschriebene Standardflachkollektor von den am Projekt beteiligten Kollektorherstellern (CitrinSolar GmbH, Ernst-Schweizer AG, Metallbau, GREENoneTEC Solarindustrie GmbH, Ritter Energie- und Umwelttechnik GmbH und Co. KG und Solvis GmbH und Co. KG) sowie den Vertreter von ISE, IAO und ITW vereinbart.

Merkmal	Beschreibung		
Bruttokollektorfläche [m ²]	Ca. 2.5		
Breite [mm]	1200 ± 5 %		
Länge [mm]	Ergibt sich aus Breite und Bruttofläche		
Dicke [mm]	Keine Vorgabe		
Tauchhülse	Keine, wird in steckbaren Anschluss integriert		
Anschlüsse	4 Stück seitlich, alternativ 2 Stück seitlich, Aufweitung auf 22 mm Innendurchmesser (vgl. Abbildung 18)		
Steckverbinder	2 oder 3 O-Ringe,		
Schnittstelle Montagesystem	Umlaufende Nut (vgl. Abbildung 19)		

Tabelle 6: Eigenschaften des zweiten Vorschlags eines Standardflachkollektors

In Abbildung 18 ist der im Projekt entwickelte Standardanschluss für die Steckverbinder dargestellt. Abbildung 19 zeigt die im Projekt entwickelte standardisierte, als umlaufende L-Nut ausgeführte, Schnittstelle zum Montagesystem (MOUNT-L).

Abbildung 18: Standardanschluss für die steckbaren Anschlüsse des Standardflachkollektors

Abbildung 19: Standardisierte, als umlaufende L-Nut ausgeführte, Montageschnittstelle MOUNT-L, des Standardflachkollektors

4 Kollektorbefestigung (AP 3); ISE

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem

KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen

4.1 IST-Analyse Montagesystem und Montagefälle (AP 3.1)

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.

4.2 Auswertung und Bestimmung des Kostensenkungspotenzials (AP 3.2)

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.

4.3 Empirische Belastungsprüfung (AP 3.3)

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.

4.4 Festlegung von Schnittstellen und Dokumentation (AP 3.4)

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.
5 Speicher (AP 4); ITW

5.1 Marktanalyse Speicher (AP 4.1)

Auf Grundlage der am Forschungs- und Testzentrum für Solaranlagen (TZS) in Stuttgart durchgeführten Speicherprüfungen sowie einer Internetrecherche wurde eine Datenbank für Trinkwasser- und Kombispeicher aufgebaut. Die Datenbank diente vor allem als Grundlage für die Erstellung eines Standards für einen Trinkwasser- und einen Kombispeicher. Sie enthält detaillierte Informationen zu Volumina, Abmessungen, Speicherkonzept, Ausführung der Wärmedämmung, hydraulischen Anschlüssen und Temperaturfühlern für insgesamt 30 Trinkwasserspeicher mit Nennvolumina von 1601 bis 9521 und 37 Kombispeicher mit Nennvolumina von 5001 bis 20101. Hierzu wurde ein separater Bericht "Marktanalyse Speicher" erstellt (siehe Anhang C: Marktrecherche Speicher).

5.2 Prüfung Speicher (AP 4.2)

Im Rahmen des Projekts erfolgte eine komplette Prüfung eines Kombispeichers mit einem Nennvolumen von 8151 nach EN 12977-4. Der Speicher hat keinen Kollektorkreis-Wärmeübertrager, da er in Verbindung mit einem Kollektorsystem eingesetzt wird, das ohne Frostschutzmittel, also mit reinem Wasser betrieben wird. Das Trinkwasser wird mit Hilfe eines externen Wärmeübertragers in einer sog. Frischwasserstation im Durchlauf erhitzt. Das thermische Verhalten dieser Station wurde ebenfalls vermessen. Der Speicher verfügt mit Ausnahme der Entlüftung und des untersten Anschlusses über im Winkel von 45° nach unten geführte Anschlüsse als Mikrozirkulationsbremsen. Die Wärmedämmung besteht aus PU-Hartschaum-Teilen mit einer Stärke von 90 mm. Nur die Bodendämmung besteht aus Polyester-Faservlies mit einer Stärke von 100 mm. Die Ermittlung der Wärmeverlustrate nach EN 12977-3 ergab einen Wert von 2,63 W/K. Damit erreicht der Speicher die Effizienzklasse "C" nach der Verordnung (EU) Nr. 812/2013, Anhang II. Dies entspricht dem seit 2017 gültigen Mindeststandard für Speicher in der EU. Ein im Jahr 2012 geprüfter Speicher gleicher Größe mit gleichem Wärmedämmkonzept und gleicher Dämmstärke (mit Ausnahme der Bodendämmung: 50 mm) erreichte nach EN 12897 einen Wert von 3,02 kWh/24h. Dies entspricht einer Wärmeverlustrate von 2,80 W/K und zeigt damit, dass der ermittelte Wert von 2,63 W/K für dieses Wärmedämmkonzept gut ist. Schwierig ist bei diesem Wärmedämmkonzept die Abdichtung. Für eine niedrige Wärmeverlustrate ist es notwendig, dass die Hartschalenelemente sehr gut zueinander abdichten. Außerdem wurde für diesen Speicher die effektive vertikale Wärmeleitfähigkeit zu 1,59 W/K bestimmt. Das ist ein typischer Wert für Stahlspeicher dieser Größe ohne innere Wärmeübertrager.

Des Weiteren wurden für einen Pufferspeicher mit einem Volumen von 929 Litern die Wärmeverluste für 2 unterschiedliche, neue Wärmedämmkonzepte auf Wunsch des Projektpartners nach EN 12897:2016 bestimmt. Bei der ersten Wärmedämmung handelte es sich um ein 2-Schicht-Polyesterfaservlies mit Dämmstärken von je 110 mm für Deckel und Mantel sowie 70 mm für den Boden. Dieser Speicher erzielte in Verbindung mit dieser Wärmedämmung einen Bereitschafts-Wärmeaufwand von 2,47 kWh/24h. Dies entspricht einer Wärmeverlustrate von 2,29 W/K. Damit erreicht der Speicher die Effizienzklasse "B" nach der Verordnung (EU) Nr. 812/2013, Anhang II.

Bei der zweiten Wärmedämmung handelte es sich um ein 4-Schicht-Polyesterfaservlies mit Dämmstärken von ebenfalls je 110 mm für Deckel und Mantel sowie 70 mm für den Boden. Der Speicher erzielte in Verbindung mit dieser Wärmedämmung einen Bereitschafts-Wärmeaufwand von 2,25 kWh/24h. Dies entspricht einer Wärmeverlustrate von 2,08 W/K. Damit erreicht der Speicher ebenfalls die Effizienzklasse "B" nach der Verordnung (EU) Nr. 812/2013, Anhang II.

Die Prüfungen haben damit gezeigt, dass bei Speicher mit einem Volumen von ca. 1000 Litern mit konventionellem Wärmedämmmaterial und üblichen Dämmstärken die Energieeffizienzklasse "B" nach der Verordnung (EU) Nr. 812/2013, Anhang II erreicht werden kann.

Außerdem wurden noch die Wärmeverluste eines Sonderspeichers geprüft. Hierbei handelt es sich um einen Kombispeicher mit einem Nennvolumen von 230 Liter mit eingebautem Gasbrenner im Bereitschaftsteil und einem integralen Wärmedämmkonzept für das gesamte Gerät. Auf Wunsch des Projektpartners wurden die Wärmeverluste nach EN 12897:2016 bestimmt. Da der Speicher auch ohne Gasbrenner verkauft wird, wurden die Wärmeverluste auch ohne eingebauten Gasbrenner ermittelt. Es zeigte sich, dass der Bereitschafts-Wärme-aufwand nach EN 12897:2016 des Speichers durch den eingebauten Gasbrenner um ca. 7 % ansteigt. Allerdings treten durch den eingebauten Gasbrenner im Vergleich zu einer konventionellen Lösung mit separatem Gasbrenner und separatem Speicher keine Wärmeverluste in Rohrleitungen und keine ungenutzte (Rest)-Wärme im Gasbrenner und der Verrohrung auf. Bei dem verwendeten Wärmedämmkonzept aus EPS-Platten wurden einige Wärmebrücken detektiert, die durch nicht ausreichend passgenaue Dämmteile hervorgerufen werden. Durch provisorisches Beseitigen dieser Wärmebrücken und teilweise zusätzlichen Dämmteilen konnten die Wärmeverluste noch um ca. 14 % reduziert werden, sodass der Speicher damit die Energieeffizienzklasse "C" erreicht.

Die Erfahrungen aus diesen Prüfungen und auch aus Prüfungen vergangener Jahre haben zur Entscheidung für eine Wärmedämmung aus Polyester-Faservlies für den Standardkombispeicher geführt. Ein weiterer Grund für ein Wärmedämmkonzept aus Polyester-Faservlies ist die geringe Beliebtheit der Hartschaum-Wärmedämmungen bei den Installateuren (große, unflexible Manteldämmelemente, deren Kanten beim Transport leicht beschädigt werden).

5.3 Kostensenkungspotential und Definition eines Speicherstandards Speicher (AP 4.3 + AP 4.4)

Um das Kostensenkungspotential der Speicher zu untersuchen wurden auf der Grundlage von AP 4.1 und AP4.2 ein Standard für einen Trinkwasserspeicher sowie einen Kombispeicher erarbeitet.

Zur Definition eines **Standard-Trinkwasserspeichers** wurden gemeinsam mit den Projektpartnern folgende Anforderungen festgelegt:

<u>Volumen</u>: Eine Analyse der vom BAFA geförderten Solaranlagen zur Trinkwassererwärmung aus dem Jahr 2015 ergab, dass etwa gleich viele Anlagen mit Speichern mit einem Volumen von 3001 sowie 4001 gefördert wurden. Da Simulationsrechnungen bei gleicher Kollektorfläche keine zusätzliche Energieeinsparung für den größeren Speicher zeigten, wurde auch aus Kostengründen ein Volumen von 3001 für den Standardtrinkwasserspeicher gewählt. <u>Behältermaterial</u>: Die Marktanalyse ergab, dass alle Trinkwasserspeicher als emaillierte Stahlbehälter ausgeführt sind. Die einzige Alternative hierzu sind Edelstahlspeicher, die aber um den Faktor zwei bis drei teurer sind. Die Wahl viel deshalb auf einen emaillierten Stahlbehälter.

Durchmesser: Der Trinkwasserspeicher muss zur einfachen Einbringung ins Gebäude türgängig sein. Dies führt zu einem max. zulässigen Durchmesser von 80 cm. Zur Wahl des Speicherdurchmessers wurden verschiedene Untersuchungen durchgeführt: Es wurde die Abhängigkeit der Oberfläche und damit der Wärmeverluste vom Speicherdurchmesser untersucht (siehe Abbildung 20). Außerdem wurde die Abhängigkeit der anteiligen Energieeinsparung bei gleicher Wärmeverlustrate (und damit der thermischen Schichtung) vom Speicherdurchmesser untersucht (siehe Abbildung 21). Schließlich wurde noch die Abhängigkeit des Stahlvolumens und der Schweißnahtlänge vom Speicherdurchmesser bestimmt (siehe Abbildung 22 und Abbildung 23). Das Minimum der Speicheroberfläche ist nur schwach ausgeprägt und liegt bei einem Speicherdurchmesser von 0,6 m bis 0,8 m. Das bedeutet, dass bezüglich des Speicherdurchmessers relativ große Freiheiten vorliegen. Allerdings steigt mit abnehmendem Speicherdurchmesser und damit zunehmender Speicherhöhe die anteilige Energieeinsparung f_{sav} nach EN 12977-2:2018, da die thermische Schichtung bei einem höheren Speicher besser erhalten bleibt. Hierbei steigt die anteilige Energieeinsparung jedoch mit zunehmender Speicherhöhe, d.h. abnehmendem Speicherdurchmesser, immer weniger an. Die Projektpartner einigten sich als Kompromisslösung auf einen Speicherdurchmesser von 0,55 m, entsprechend einer Speicherhöhe von 1,39 m (mit Klöpperböden, ohne Füße). Untersuchungen der Volumina von Wärmedämmung und Stahl sowie der Schweißnahtlänge zeigen, dass diese bei einem Speicherdurchmesser von 0,55 m ebenfalls relativ klein gehalten werden können.

Speicheranschlüsse und Flansche: Die Marktanalyse zeigt, dass bei den meisten Trinkwasserspeichern mit einem Volumen von 3001 die Anschlüsse für Kalt- und Warmwasser, Kollektorvor- und Rücklauf sowie Nachheizung Vor- und Rücklauf als 1"-Anschlüsse mit Außengewinde ausgeführt sind. Die Anschlüsse für den Kollektorvor- und Rücklauf sind auf der gleichen Höhe positioniert, damit die Solarstation einfach direkt am Speicher montiert werden kann. Hierzu sind diese Anschlüsse um 45° zu den anderen gedreht, damit die Kollektor nicht mit den anderen Anschlüssen kollidiert. Verrohrung zum Der Zirkulationsanschluss ist gemäß der Marktrecherche überwiegend in der Dimension 3/4" mit Außengewinde ausgeführt. Diese Dimensionen bzw. Gewinde wurden deshalb für den Standardspeicher übernommen. Die meisten Speicher besitzen außerdem einen 1 1/2"-Anschluß mit Innengewinde für einen Heizstab und einen Reinigungsflansch mit einer Nennweite von 100 mm bis 110 mm. Obwohl der Reinigungsflansch in der Praxis in den seltensten Fällen genutzt wird hat eine Umfrage unter Fachpersonal ergeben, dass sich dieses überwiegend für den Einbau eines Reinigungsflansches ausspricht (Möglichkeit der Ausräumung des Speichers von Kalkablagerungen und Ablagerungen der Opferanode). Es wird beim Standardspeicher deshalb ein Reinigungsflansch nach EN 12897:2016, Anhang C von 120 mm vorgesehen. Entsprechend der Marktrecherche besitzen alle Speicher außerdem einen Anschluss im Deckel für die Opferanode in der Dimension 1" oder 1 1/4". Für den Standardspeicher wurde die Dimension 1¹/₄" gewählt, da dies die Verwendung von größeren Opferanoden erlaubt und dadurch die Wartungskosten gesenkt werden.

<u>Temperaturfühler</u>: Zur Installation der Speichertemperaturfühler sind 2 eingeschweißte Tauchhülsen (zur Regelung des Kollektorkreises und der Nachheizung) mit einem Innendurchmesser von 12 mm vorgesehen. Diese Lösung ist am besten für das gewählte Wärmedämmkonzept geeignet. Gemäß der Marktrecherche werden eingeschweißte Tauchhülsen außerdem am häufigsten eingesetzt. Der relativ große Innendurchmesser stellt sicher, dass alle üblichen

Temperaturfühler eingesetzt werden können. Diese müssen jedoch mit einer Feder versehen sein. Alternativ kann ein entsprechendes Klemmblech verwendet werden.

Abbildung 20: Abhängigkeit der Oberfläche des Speichers vom Durchmesser

Abbildung 21: Abhängigkeit der anteiligen Energieeinsparung vom Speicherdurchmesser

Abbildung 22: Abhängigkeit des Stahlvolumens vom Speicherdurchmesser

Abbildung 23: Abhängigkeit der Schweißnahtlänge vom Speicherdurchmesser

<u>Wärmedämmung</u>: Als Wärmedämmkonzept wurde ein PU-Schaum, der fest mit dem Speicher verbunden ist gewählt. Dies hat zwar den Nachteil, dass der Transport durch das größere Volumen etwas aufwändiger ist, dafür ist eine ideal anliegende Wärmedämmung garantiert und ein separater Transport sowie das Anlegen der Wärmedämmung entfallen für den Installateur. Außerdem kann eine Fußkonstruktion aus Stahl entfallen, da Speicher dieser Größe auf dem PU-Schaum stehen können (Vermeidung von Wärmebrücken). Stattdessen ist ein Blech unterhalb des PU-Schaums nötig, in das die verstellbaren Füße eingeschraubt werden können. Die Wärmedämmung wird so ausgelegt, das die Energieeffizienzklasse "B" nach Verordnung (EU) Nr. 812/2013 erreicht wird. Für eine Wärmeleitfähigkeit des PU-Schaumes von 0,03 W/(m·K) ist hierzu eine Dämmstärke von ca. 8 cm für den Mantel und den Deckel sowie 7 cm für den Boden ausreichend.

<u>Mikrozirkulationsbremsen:</u> Laut Projektantrag sollen zur weiteren Reduzierung von Wärmeverlusten alle Anschlüsse außer dem Kaltwasseranschluss mit im Rahmen dieses Projekts entwickelten, in die Anschlüsse integrierbaren Mikrozirkulationsbremsen ausgestattet werden.

Abbildung 24 zeigt den Standardspeicher mit Bemaßung. Die Inneneinrichtung (Wärmeübertrager) des Speichers ist nur beispielhaft dargestellt. Dies soll nicht standardisiert werden, damit die Hersteller hier noch die Möglichkeit für Alleinstellungsmerkmale haben und die Wärmeübertrager entsprechend ihren Vorstellungen zu dimensionieren (evtl. mit thermischen Schichteinrichtungen zu versehen). Für den Installateur ist das Innere des Speichers nicht relevant und beeinflusst somit nicht den Installationsprozess.

Abbildung 24: Standardtrinkwasserspeicher mit Bemaßung

Folgende Speicherhersteller wurden angefragt die Herstellkosten für diesen Standard-Trinkwasserspeicher im Vergleich zu ihren Serienspeichern zu ermitteln.

- Citrin Solar Energie und Umwelttechnik
- Bruns Heiztechnik GmbH
- Solarbayer GmbH
- TWL-Technologie GmbH
- Austria Email AG
- BTD Behälter- und Speichertechnik Dettenhausen GmbH
- MARANI G. SPA
- Huch GmbH Behälterbau und Verwaltungsgesellschaft EG GmbH
- Reflex Winkelmann GmbH

Die Angaben bewegen sich zwischen "in etwa gleich teuer" bzw. um ca. 8 % teurer. Simulationsrechnungen haben allerdings ergeben, dass aufgrund der höheren anteiligen Energieeinsparung durch die sinkenden Wärmeverluste des Speichers der solare Wärmepreis dennoch um ca. 10 % sinkt. Weiterhin kann angenommen werden, dass sich die Produktionskosten bei höheren Stückzahlen reduzieren.

Zur Definition eines **Standard-Kombispeichers** wurden gemeinsam mit den Projektpartnern folgende Anforderungen festgelegt:

<u>Volumen</u>: Es wurde ein Volumen von 8001 gewählt. Da der Speicher türgängig sein muss (80 cm Türbreite), wurde der für Kombispeicher dieser Größe meist verwendete Durchmesser von 79 cm gewählt. Ein größeres Volumen hätte eine Gesamthöhe (mit Wärmedämmung) zur Folge, die im Untergeschoss von Altbauten nicht mehr realisiert werden kann.

<u>Behältermaterial</u>: Die Marktanalyse von Kombispeichern ergab, dass die meisten Speicher als Stahlspeicher (innen roh, außen grundiert) ausgeführt sind. Dies wurde deshalb für den Standard-Kombispeicher übernommen.

Speicheranschlüsse: Die Anschlüsse für die direkte Be- und Entladung wurden als 11/2"-Anschlüsse mit Innengewinde ausgeführt, damit der Speicher auch in Verbindung mit Wärmepumpen eingesetzt werden kann (großer Strömungsquerschnitt für die in Verbindung mit Wärmepumpen auftretenden hohen Volumenströme). Da diese Anschlüsse in der Regel unmittelbar danach reduziert werden bietet ein Innengewinde die kostengünstigste Möglichkeit hierzu. Die Anschlüsse für das Kalt- und Warmwasser, sowie für den Kollektorvor- und Rücklauf werden als 1 "-Außengewinde ausgeführt. Somit lassen sich diese schnell über eine flachdichtende Verschraubung anschließen. Die Anschlüsse für den Kollektorvor- und Rücklauf sind wie beim Standard-Trinkwasserspeicher auf der gleichen Höhe positioniert, damit die Solarstation schnell direkt am Speicher montiert werden kann. Hierzu sind diese Anschlüsse um 45° zu den anderen gedreht, damit die Verrohrung zum Kollektor nicht mit den anderen Anschlüssen kollidiert. Entsprechendes gilt für die Anschlüsse der Raumheizung, damit die Mischerstation ebenfalls schnell am Speicher montiert werden kann. Der Anschluss für die Befüllung und Entleerung ist am unteren Klöpperboden angebracht, in der Dimension 1/2" mit Innengewinde zum Anschluss eines Befüll- und Entleerhahns. Am oberen Klöpperboden befindet sich ein Anschluss für die Entlüftung, ebenfalls in der Dimension 1/2" mit Innengewinde für die schnelle Montage eines Entlüfters.

<u>Temperaturfühler:</u> Zur Installation der Speichertemperaturfühler wurde die Anbringung mit Hilfe von einzelnen (geschraubten) Klemmblechen gewählt (siehe **Abbildung 25**).

Abbildung 25: Geschraubtes Klemmblech für die Montage der Speicherfühler

Dies reduziert die Gefahr der Anbringung in der falschen Höhe im Vergleich zu einem durchgängigen Klemmblech und ermöglicht die Anbringung von Temperaturfühlern mit unterschiedlichem Durchmesser.

<u>Wärmedämmung</u>: Die Wärmedämmung für Speicher dieser Größe muss abnehmbar sein. Es wurde deshalb eine abnehmbare Wärmedämmung aus Polyesterfaservlies gewählt mit 2-teiliger Manteldämmung, welche mit Hakenleisten verschlossen wird. Die Deckeldämmung besteht aus einer eingelegten Ronde. Die Bodendämmung ist 2-teilig und besteht aus einem Ring um den Stahlstandring und einer Ronde innerhalb des Stahlstandrings. Die Marktrecherche ergab, dass dies das am häufigsten eingesetzte Dämmkonzept ist. Die Dämmstärke wird so ausgelegt, dass die Energieeffizienzklasse "B" nach der Verordnung (EU) Nr. 812/2013, Anhang II erreicht wird. Diese Qualität ist bei Speichern dieser Größe noch ohne teure Vakuum-Wärmedämmung realisierbar und reduziert den solaren Wärmepreis im Vergleich zur Mindestanforderung (Energieeffizienzklasse "C") um ca. 5 %.

<u>Mikrozirkulationsbremsen:</u> Laut Projektantrag sollen auch beim Standard-Kombispeicher zur weiteren Reduzierung von Wärmeverlusten alle Anschlüsse außer dem Kaltwasseranschluss mit im Rahmen dieses Projekts entwickelten, in die Anschlüsse integrierbaren Mikrozirkulationsbremsen ausgestattet werden.

Abbildung 26 zeigt den Standard-Kombispeicher mit Bemaßung. Die Inneneinrichtung (Wärmeübertrager) des Speichers ist auch hier wieder beispielhaft dargestellt. Diese soll nicht standardisiert werden, damit die Hersteller die Möglichkeit für Alleinstellungsmerkmale haben und die Wärmeübertrager entsprechend ihren Vorstellungen zu dimensionieren (evtl. mit thermischen Schichteinrichtungen zu versehen). Am Speichermantel sind insgesamt 4 Muffen zum Befestigen von Tragebügeln angebracht zur Verbesserung des Handlings des Speichers (Wunsch von Projektteilnehmern). Als Fußkonstruktion wurde ein Stahlstandring gewählt, da dieser eine hohe Stabilität garantiert und das Handling des Speichers im Vergleich zu einzelnen Füßen verbessert. An diesen Standring werden 3 Muffen angeschweißt in die Füße zum Justieren des Speichers eingeschraubt werden.

Abbildung 26: Standard-Kombispeicher

5.5 Entwicklung Mikrozirkulationsbremse (AP 4.5)

Vor Beginn der Entwicklung einer Mikrozirkulationsbremse wurde zusammen mit den Projektpartnern eine Anforderungsliste (vgl. Anhang E: Anforderung Mikrozirkulationsbremse) erstellt sowie eine Markt- und Patentrecherche hierzu erstellt.

Zur simulationstechnischen Untersuchung der Einrohrkonvektion wurde ein Modell in Comsol Multiphysics erstellt, das insbesondere für Parametervariationen gut geeignet ist, welche nicht mit bekannten Prüfverfahren und vertretbarem Aufwand durchgeführt werden können. Zur Validierung der Strömungssimulationen wurde ein Versuchsstand zur Visualisierung der Einrohrkonvektion in einem Glasrohr aufgebaut und experimentell die Strömungsgeschwindigkeit der Einrohrkonvektion bestimmt. Mit Hilfe der experimentell bestimmten Strömungsgeschwindigkeit konnten die Simulationsmodelle validiert werden. Darüber hinaus konnte durch die Strömungsvisualisierung das Verständnis des Phänomens Einrohrkonvektion verbessert werden. Der Versuchsstand und eine Momentaufnahme eines Detailausschnitts am Glasrohr zeigt Abbildung 27.

Abbildung 27: Versuchsstand zur Visualisierung der Einrohrkonvektion in einem Glasrohr; Detaildarstellung der durch Strömungsvisualisierung markierten Mikrozirkulation im oberen Rohrbereich (rechts unten)

Die Ergebnisse der Strömungssimulationen haben gezeigt, dass die Mikrozirkulationsbremsen "Siphon" und "schräger Anschlussstutzen" in einer marktüblichen Anlagen-Konfiguration die größte Reduzierung der Wärmeverluste durch Einrohrkonvektion erwarten lassen. Eine Parametervariation der Abmaße des "schrägen Anschlussrohrs" zeigte, dass neben dem Durchmesser und der Länge, ebenfalls das Rohrmaterial und die Neigung des Rohres relevante Einflussgrößen für die Ausbildung der Einrohrkonvektion sind.

Aufbauend auf den Ergebnissen der Strömungssimulationen wurden experimentelle Versuche mit unterschiedlichen kommerziell erhältlichen und z. T. am ITW gefertigten Mikrozirkulationsbremsen durchgeführt. Eine Auswahl der am ITW gefertigten Prototypen ist in Abbildung 28 dargestellt.

 Abbildung 28: Auswahl messtechnisch untersuchter Prototypen von Mikrozirkulationsbremsen (A: Wellrohr-U-Siphon, B: Wellrohr-Z-Siphon, C: Wellrohr-Segment, D: Kupfer-U-Siphon, E: Kupfer-Z-Siphon, F: Wellrohr-Schleife, G: Kunststoffschlauch-Z-Siphon)

Für diese Untersuchungen wurde ein am ITW/TZS vorhandener Speicherprüfstand nach EN 12977-3 zur Bestimmung des sog. Speicheranschlussverlustkoeffizienten eingesetzt. Dieser beschreibt die Differenz der Wärmeverlustrate eines Speichers mit Anschlussrohr und Mikrozirkulationsbremse und desselben Speichers ohne Anschlussrohr. Als Prüfling diente ein Pufferspeicher mit einem Nennvolumen von 8001. Dieser weist ohne angeschlossene Verrohrung eine Wärmeverlustrate von 2,20 W/K auf. Zur Untersuchung der verschiedenen Mikrozirkulationsbremsen wurde im oberen Bereich des Speichers ein Kupferrohr, 28 mm, mit einer Länge von 4 m angebracht. Das Rohr war mit einer 20 mm dicken Wärmedämmung aus PU-Schaum ($\lambda = 0,04$ W/K) versehen. Die Ergebnisse der Vergleichsuntersuchung verschiedener Mikrozirkulationsbremsen sind in Abbildung 29 dargestellt. Diese decken sich mit den Erkenntnissen aus den Simulationsstudien, wobei die Mikrozirkulationsbremse "Siphon" eine deutliche Verbesserung gegenüber anderen Mikrozirkulationsbremsen nur dann zeigt, wenn ein geeignetes Rohrmaterial verwendet wurde. Die größte Reduzierung des Anschlussverlustkoeffizienten konnte mit siphonartigen Strukturen aus Edelstahlwellrohr erreicht werden. Die Schenkellänge des untersuchten "Siphons" hat keinen bedeutenden Einfluss auf den Anschlussverlustkoeffizienten, wie weitere Versuchsergebnisse in Abbildung 30 zeigen.

Abbildung 29: Messtechnisch bestimmter Anschlussverlustkoeffizient verschiedener Prototypten von Mikrozirkulationsbremsen

Abbildung 30: Messtechnisch bestimmter Anschlussverlustkoeffizient verschiedener Prototypten von "Siphon"-Mikrozirkulationsbremsen

Die Anwendbarkeit der neu entwickelten Prüfmethodik wurde durch mehrere Wiederholungsmessungen gezeigt. Zusätzlich wurde der Einfluss des Temperaturniveaus auf die Wärmeverlustrate des Speichers ohne Anschlussrohr untersucht und konnte als nicht relevant für die Methodik identifiziert werden. Im Bereich zwischen 40 °C und 80 °C weist die Wärmeverlustrate (UA)_{s,a} des betrachteten Speichers eine Erhöhung von nur 3 % pro 10 K Temperaturerhöhung auf.

Als weitere Mikrozirkulationsbremsen sind eine Rückschlagklappe mit einem orthogonal zur Strömungsrichtung angeordneten Ventilsitz und ein Z-Siphon (mit Kunststoff als Schenkelmaterial im mittleren Schenkelbereich; Schenkellänge: 22 cm) untersucht worden. Die Ergebnisse des Anschlussverlustkoeffizienten für die Rückschlagklappe bzw. den Z-Siphon sind $(UA)_{AN} = 0,53 \text{ W/K}$ bzw. $(UA)_{AN} = 0,23 \text{ W/K}$. Es zeigen sich bei der Rückschlagklappe hinsichtlich des Anschlussverlustkoeffizienten keine nennenswerten Unterschiede zur bereits getesteten Rückschlagklappe mit schrägem Sitz ($(UA)_{AN} = 0,50 \text{ W/K}$). Der Z-Siphon mit Kunststoff als Schenkelmaterial weist im Vergleich zu einem Z-Siphon aus Kupfer ähnlicher Schenkellänge deutlich niedrigere UA_{AN}-Werte auf bzw. erzielt vergleichbar gute Ergebnisse wie U- und Z-Siphons aus Edelstahl-Wellrohr. Dies ist auf einen reduzierten Einfluss der Wärmeleitung im Siphon-Material zurückzuführen.

Anschließend wurden Untersuchungen zur Absicherung der Messmethodik und zu Querabhängigkeiten verschiedener Versuchsrandbedingungen, z. B. die Wahl der Anschlussrohrlänge, -anzahl und -position, durchgeführt. Hierfür wurde zunächst der aus vorangegangen Untersuchungen verwendete Pufferspeicher (800 l) genutzt. Es standen drei identische Anschlussrohre mit einer Länge von 1 m und einer Wärmedämmung mit einer Dicke von 20 mm PU-Weichschaum zur Verfügung. Die Ergebnisse der für (UA)_{AN} ermittelten Werte zeigt Abbildung 31.

Abbildung 31: Messtechnisch bestimmter Anschlussverlustkoeffizient (UA)_{AN} für unterschiedliche Anschlussrohrkonfigurationen (Variante 1 bis 5)

Aus der Bewertung unterschiedlicher Versuchskonfigurationen (vgl. Abbildung 31) und dem Vergleich zu vorangegangen Untersuchungen (siehe Abbildung 29 und Abbildung 30) lassen sich folgende Erkenntnisse zur Messmethodik ableiten:

- Die Länge des Anschlussrohres zeigt bei den betrachteten Rohrlängen einen nicht proportionalen Einfluss auf den Anschlussverlustkoeffizienten. Durch die Reduktion der Rohrlänge von 4 m auf 1 m reduziert sich der Anschlussverlustkoeffizient (UA)_{AN} um 29 %.
- Eine Erhöhung der Anzahl der Anschlussrohre von eins auf zwei auf einer gleichbleibenden rel. Höhe (V1, V2) bzw. auf zwei unterschiedlichen Höhen (V1, V4) führt zu einer Zunahme des Anschlussverlustkoeffizienten um 50 % bzw. um 40 %.
- Speichereinbauten, wie z. B. Prallbleche oder eine speicherinterne Verrohrung, reduzieren ebenfalls den Anschlussverlustkoeffizienten. Im betrachteten Fall sinkt (UA)_{AN} um 0,09 W/K. Im Gegensatz dazu steigt (UA)_{AN} um 0,18 W/K für den Fall, dass die Wärmedämmung des Anschlussrohres entfernt wird.

- Durch einen Vergleich der Varianten mit gleicher Anzahl angeschlossener Rohre aber unterschiedlicher Höhe ist ersichtlich, dass die Anschlusshöhe ebenfalls einen nicht zu vernachlässigenden Einfluss auf den Anschlussverlustkoeffizienten hat.
- Mehrere über der Höhe angebrachte Speichertemperatursensoren auf der Speichermanteloberfläche zeigen für den Fall eines Speichers ohne und mit Anschlussrohr nur geringe Unterschiede während der Auskühlung des Speicherfluids (L3-Prüfsequenz nach EN 12977-3). Aus diesem Sachverhalt wird gefolgert, dass bei der Verwendung eines Anschlussrohrs die Temperaturverteilung im Speicher ähnlich zum Fall ohne Anschlussrohr ist.

Außerdem erfolgte die Untersuchung der Einrohrkonvektion auch an einem kleineren und schlechter wärmegedämmten bivalenten Trinkwasserspeicher mit einem Volumen von 400 l und einer Wärmeverlustrate ohne Anschlussrohr von $(UA)_{s,a} = 2,55$ W/K. Zur Bestimmung der Anschlussverlustkoeffizienten wurde ein 1 m langes Kupferrohr, 28 mm mit einer 20 mm dicken Wärmedämmung aus PU-Weichschaum verwendet. Das Anschlussrohr befand sich auf einer rel. Speicherhöhe von 0,82 (Anschlussdimension: 1") bzw. auf einer rel. Speicherhöhe von 0,58 (Anschlussdimension: 3/4"). Die Anschlussverlustkoeffizienten wurden zu $(UA)_{AN} = 0,15$ W/K bzw. UA_{AN} = 0,07 W/K ermittelt. Die im Vergleich zum Kombispeicher (Anschluss: 1½"</sub>) deutlich niedrigeren Anschlussverlustkoeffizienten sind vor allem auf die kleineren Anschlussdurchmesser zurückzuführen. Da der Einfluss einer Mikrozirkulationsbremse auf die Wärmeverluste des Speichers damit deutlich geringer ist als beim Pufferspeicher wurden keine weiteren Untersuchungen am Trinkwasserspeicher durchgeführt.

Fasst man die Ergebnisse hinsichtlich der Absicherung der Messmethodik zusammen, kann gefolgert werden, dass hiermit plausible und reproduzierbare Ergebnisse erzielt werden können. Jedoch liegt aufgrund der z. T. komplexen Strömungsvorgänge i. d. R. keine lineare Abhängigkeit des Anschlussverlustkoeffizienten von der Rohrlänge und der Rohranzahl vor. Auch die Rohrposition und die konstruktive Ausführung des Anschlusses im Hinblick auf seinen Durchmesser sowie evtl. vorhandene Prallblatten zur Strömungsberuhigung beeinflussen die Einrohrkonvektion. Aus diesen Sachverhalten ist zu folgern, dass für vergleichende Messungen unterschiedlicher Mikrozirkulationsbremsen derselbe Speicher und dasselbe Anschlussrohr in identischer geometrischer Anordnung zu verwenden sind.

Druckverlustmessung

Da der Einsatz einer Mikrozirkulationsbremse je nach Modell zu einem zusätzlichen Druckverlust am Speicheranschluss führt, wurde dieser für verschiedene Arten von Mikrozirkulationsbremsen ebenfalls bestimmt. Hierzu wurde ein neuer Versuchstand aufgebaut, der in Abbildung 32 dargestellt ist. Über eine Hydraulikeinheit werden definierte Versuchsrandbedingungen wie Volumenstrom und Temperatur in einem hydraulischen Kreis hergestellt. Die zu untersuchende Mikrozirkulationsbremse ist in den hydraulischen Kreis eingebaut. Eine Messdatenerfassung, bestehend aus Digitalmultimeter mit integriertem Messstellenumschaltung, erfasst u. a. die Vorlauf- und Rücklauftemperatur, den Volumenstrom, die Umgebungslufttemperatur und den Druckverlust der Mikrozirkulationsbremse. Abbildung 33 zeigt die Positionierung und die hydraulische Verschaltung der relevanten Komponenten der Druckverlustmessung des Prüfstandes und die für Versuche zur Verfügung stehenden Mikrozirkulationsbremsen. Abbildung 34 zeigt die Messergebnisse von Mikrozirkulationsbremsen aus Kupfer und Edelstahlwellrohr (in Siphon-Form) bzw. einer kommerziell erhältlichen Mikrozirkulationsbremse als Einschubteil in den Speicheranschluss aus Kunststoff.

Abbildung 32: Versuchsstand zur Messung des Druckverlustes in Mikrozirkulationsbremsen

Abbildung 33: Positionierung und hydraulische Verschaltung der relevanten Komponenten der Druckverlustmessung (links); Auswahl zur Verfügung stehender Mikrozirkulationsbremsen (rechts)

Abbildung 34: Druckverlust als Funktion des Volumenstroms für ausgewählte Mikrozirkulationsbremsen: Kupfer-U-Siphon (Schenkellänge 30 cm), Wellrohr-U-Siphon (Schenkellänge 15), Konvektionsbremse

Die Ergebnisse zeigen im betrachteten Volumenstrombereich vergleichsweise geringe Druckverluste der Mikrozirkulationsbremsen. Ebenfalls ist eine typische quadratische Abhängigkeit des Druckverlustes vom Volumenstrom erkennbar. Es kann angenommen werden, dass andere Schenkellängen der Siphons nur zu geringfügig höheren Druckverlusten führen. Bei Rückschlagklappen, die auch in ihrer thermischen Funktion nicht überzeugen, treten auch deutlich höhere Druckverluste von bis zu 3500 Pa bei einem Volumenstrom von ca. 600 l/h auf.

Entwicklung einer neuartigen Lamellenkonvektionsbremse (LKB)

Abbildung 35 zeigt eine am ITW/TZS neu entwickelte sogenannte Lamellenkonvektionsbremse (LKB), die auch am ITW gefertigt wurde und als Einschraub-MZB ausgeführt ist. Das Konzept der einschraubbaren LKB trägt der Anforderung Rechnung, dass diese direkt in den Speicheranschluss eingesetzt werden soll sowie nachrüstbar sein soll, wenn möglich ohne besondere Einbaupositionsvorgabe. Dies kann bereits beim Hersteller geschehen, sodass der Installateur keinen zusätzlichen Montageaufwand hat. Hierdurch würden Einbaufehler vermieden. Die LKB besteht aus mehreren, hintereinander angeordneten Kunststoffscheiben, die einen 90°-Ausschnitt haben und um jeweils 90° zueinander verdreht sind. Dadurch wird einer möglichen rohrinternen Gegenströmung ein spiralförmiger Strömungsweg aufgeprägt, der im Falle einer thermischen Schichtung im Rohr diese schwächen und somit Mikrozirkulationsströmungen unterbinden kann. Die LKB ist modular aufgebaut, sodass eine Detailoptimierung, wie z. B. die Anpassung der Scheibenanzahl oder der Scheibenabstände, durchgeführt werden kann. Für diese LKB wurde die Anmeldung zum Patent beantragt.

Am ITW/TZS neu entwickelte Lamellenkonvektionsbremse nicht dargestellt, da Patentanmeldung noch nicht abgeschlossen

Abbildung 35: Am ITW/TZS entwickelte Lamellenkonvektionsbremse, ausgeführt als Einschraub-MZB für Speicheranschlüsse mit Innengewinde

Abbildung 36 zeigt eine weiterentwickelte LKB mit vier bzw. sechs Scheiben auf einer Polypropylen-Gewindestange. Die Aussparungen der Scheiben sind hier um 180° versetzt.

Am	ITW/TZS	neu	entwickelte	Am I	ΓW/TZ	ZS	neu	entwi	ckelte
Lamellenkonvektionsbremse nicht				Lamellenkonvektionsbremse					nicht
dargestellt, da Patentanmeldung noch nicht				dargestellt	, da P	atentan	meldung	noch	nicht
abgeschlossen				abgeschlossen					

Abbildung 36: Lamellenkonvektionsbremse mit Polypropylen-Gewindestange und 6 bzw. 4 Scheiben (oben links und oben rechts); eingeschraubte LKB im Speicheranschluss (u. l.) und Wärmedämmung des Anschlussrohrs (u. r.)

Zur Druckverlustmessung wurde der neu errichtete Prüfstand genutzt. Neben zwei Varianten der LKB sind zum Vergleich ein Wellrohr-U-Siphon und eine kommerzielle MZB untersucht worden. Die Ergebnisse sind in Abbildung 37 zusammengefasst. Im Vergleich zum Wellrohr-U-Siphon und der kommerziellen MZB zeigt die LKB einen höheren Druckverlust. Die Anordnung der Aussparungen der Scheiben (180° oder 90°) weist einen geringen Einfluss auf den Druckverlust auf. Bei einem Volumenstrom von 400 l/h ist der Druckverlust der LKB (Mittelwert aus dem Ergebnis der 180°- und 90°-Scheibenanordnung) um den Faktor 3,3 höher als bei der kommerziellen MZB. Bei einem Volumenstrom von 700 l/h liegt der Faktor bei 3,1.

Abbildung 37: Druckverlust in Abhängigkeit vom Volumenstrom für zwei Varianten der LKB, für ein Wellrohr-U-Siphon und für eine kommerziell erhältliche Konvektionsbremse (kommerzielle MZB)

Zur Ermittlung des Anschlussverlustkoeffizienten wurde wieder der bei vorangegangen Untersuchungen ebenfalls verwendete Pufferspeicher (Nennvolumen: 8001) mit dem 4 m langen Anschlussrohr verwendet.

Die Ergebnisse der Messungen zur Bestimmung des Anschlussverlustkoeffizienten (UA)_{AN} für die LKB in unterschiedlichen Ausführungsvarianten zeigt Abbildung 38. Außerdem sind die Ergebnisse verschiedener Z-Siphons zum Vergleich dargestellt. Diese weisen den niedrigsten Anschlussverlustkoeffizienten auf. Das beste Ergebnis erzielt der aus Edelstahl gefertigte Z-Siphon, wobei die Unterschiede zum aus Stahl gefertigten Z-Siphon mit einer Schenkellänge von 28 cm gering sind. Im Vergleich zum Fall ohne MZB ermöglichen alle untersuchten Mikrozirkulationsbremsen eine deutliche Reduktion des Anschlussverlustkoeffizienten. Die vier Ausführungs-Varianten der LKB weisen untereinander ähnliche Ergebnisse auf. Die Erhöhung der Scheibenanzahl von vier auf sechs, die Anwendung einer Polypropylen-Gewindestange anstelle einer Metallgewindestange und die Änderung der Scheibenanordnung zwischen 90° (spiralförmig) und 180° stellen daher keine ausgeprägten Optimierungsmöglichkeiten dar. Beim Einbau der LKB mit 180° versetzten Aussparungen der Scheiben wurde darauf geachtet, dass eine vertikale Strömungsführung vorliegt.

Im Hinblick auf die Handhabung der LKB konnte während der umfangreichen Untersuchungen festgestellt werden, dass ein weitestgehend störungs- und fehlerfreier Ein- und Ausbau am Speicher gegeben ist. Nur in einem Fall war der Ausbau erschwert. Der Scheibendurchmesser im Vergleich zum Innendurchmesser des Anschlusses ist hierbei entscheidend. Ein passgenauer Sitz der Scheiben im Anschlussrohr kann zur Verklemmung der Scheiben im Anschlussrohr führen, während ein zu großer Spalt zwischen den Scheiben und dem Anschlussrohr aufgrund von Leckageströmungen zu erhöhten Anschlussverlustkoeffizienten führt. Eine exemplarische Anwendung zu kleiner Scheiben und damit signifikanter Leckageströmungen an einer LKB führte zu einer Verdopplung des Anschlussverlustkoeffizienten.

Abbildung 38: Messtechnisch bestimmter Anschlussverlustkoeffizient verschiedener Prototypen von Mikrozirkulationsbremsen (aus verschiedenen Materialien gefertigte Z-Siphons und LKB)

Zusammenfassend lässt sich festhalten, dass die LKB im Vergleich zu MZB aus Edelstahl bzw. Stahl in Z-Siphon-Form höhere Anschlussverlustkoeffizienten und deutlich höhere Druckverluste aufweist, jedoch insbesondere im Hinblick auf die Montage (diese muss nicht am Installationsort, sondern kann gleich beim Speicherhersteller erfolgen), den benötigten Bauraum und die Nachrüstbarkeit bei Speichern im Bestand, deutliche Vorteile gegenüber MZB als Z-Siphons besitzt. Was den Anschlussverlustkoeffizienten betrifft, zeigt die LKB ähnlich gute Werte wie Wellrohr-Siphons (vgl. Abbildung 29 und Abbildung 30).

Anschließend wurde der Prototyp der Lamellenkonvektionsbremse (LKB) weiterentwickelt. Ziel hierbei war es vor allem ein Design zu finden, das eine ähnliche Reduktion des Anschlussverlustkoeffizienten erreicht, aber bei reduziertem Druckverlust. Außerdem sollte die neue Entwicklung aus Kostengründen ohne zusätzlichen Arbeitsaufwand (Zusammenbau) als ein Kunststoffteil herstellbar sein. Dazu wurden verschiedene Designs entwickelt und im 3-D-Druckverfahren beim Projektpartner (Fraunhofer-IAO, Stuttgart) aus ABS hergestellt. Die Abbildung 39 bis Abbildung 42 zeigen diese Varianten jeweils im Schnitt (oben) und als Foto (unten). Bei der Variante 1 handelt es sich um die zuvor vorgestellte LKB als komplettes Kunststoffteil. Hier sollte auch untersucht werden, ob die äußere Kunststoffhülse einen Einfluss auf die Einrohrkonvektion hat. Die Kunststoffhülse wurde für die weiteren Varianten übernommen, da hiermit die aufwändige Abdichtung zum Speicheranschluss entfällt. Bei den Varianten 2 und 3 wird die Strömung abwechselnd von oben nach unten geführt, im Prinzip mehrere kleine Thermosiphons hintereinandergeschaltet. Bei Variante 3 ist der Strömungskanal breiter als bei Variante 2, um den Einfluss auf die thermische Funktion als auch auf den Druckverlust untersuchen zu können. Außerdem ist die Variante 3 um Material einzusparen nicht mehr massiv hergestellt. Bei den Varianten 4 und 5 wird die Strömung in einer Schnecke geführt. Bei Variante 5 ist der Durchmesser des Schneckenkanals größer als bei Variante 4. Bei Variante 6 handelt es sich um einen Miniatur-Thermosiphon wo der Strömungsquerschnitt einseitig stark reduziert wird. Bei den Varianten 7 und 8 wird eine um 180° bzw. 360° gedrehte Schraubenfläche zur Umlenkung der Strömung eingesetzt.

Da das 3-D-Druckverfahren für eine große Stückzahl zurzeit noch zu teuer ist, wird eine zukünftige Herstellung in großen Stückzahlen im Spritzgussverfahren angestrebt. Hierzu darf die MZB keine Hinterschnitte aufweisen, da sie sonst nicht entformbar ist. Deshalb wurde bei den Varianten 9 bis 11 auf die äußere Hülse verzichtet und stattdessen der Durchmesser der Schraubenfläche entsprechend vergrößert. Um den Einbau zu vereinfachen wurde bei den Varianten 10 und 11 auf den Gewindering verzichtet. Stattdessen wurde auf der Speicherseite ein Distanzstück vorgesehen mit Hilfe dessen sich die MZB am (üblicher Weise vorhandenen) Prallblech im Inneren des Speichers abstützt. Auf der anderen Seite besitzen diese Varianten eine kleine Nase zum Herausziehen der MZB aus dem Speicher. Auf dieser Seite erfolgt die Fixierung über die Schraubenfläche an dem in den Anschluss eingeschraubten Rohr. Da der Wert für den Anschlussverlustkoeffizienten für die Variante 9 (ohne Hülse) deutlich höher war als für die Variante 8 (mit Hülse) was auf die schlechtere Abdichtung zum Inneren des Rohres zurückzuführen ist, wurde für die Varianten 10 und 11 der Durchmesser der Schraubenfläche weiter vergrößert und ein flexiblerer Kunststoff (TPU Flexa 90A) verwendet. Dadurch sollte die Abdichtung verbessert werden, aber gleichzeitig ein leichter Ein- und Ausbau gewährleistet sein.

Abbildung 39: Varianten 1 bis 3 (von links nach rechts) der MZB

Abbildung 40: Varianten 4 bis 6 (von links nach rechts) der MZB

Abbildung 41: Varianten 7 bis 9 (von links nach rechts) der MZB

Abbildung 42: Varianten 10 und 11 (von links nach rechts) der MZB

Die Abbildung 43 zeigt die am gleichen Prüfspeicher (Pufferspeicher, Nennvolumen 800 l) mit dem gleichen angeschlossenen Rohr (28 mm Kupfer, 4 m lang, mit 20 mm PU-Weichschaum-Wärmedämmung) ermittelten Anschlussverlustkoeffizienten für die Varianten 1 bis 6. Teilweise wurde auch der Einfluss der Einbaulage geprüft.

Abbildung 43: Anschlussverlustkoeffizienten der Varianten 1 bis 6

Der Anschlussverlustkoeffizient für das Rohr ohne MZB ist hier geringfügig kleiner als in Abbildung 38, da für diese Untersuchungen der Aufbau erneut erfolgte und die Wärmedämmung von Speicher und Rohr nicht vollständig reproduzierbar ist. Der Anschlussverlustkoeffizient für die Variante 1 zeigt vermutlich aus diesem Grund eine etwas geringere Verbesserung im Vergleich zum Rohr ohne MZB als bei der Untersuchung in Abbildung 38. Mit der Variante 2 konnte im Vergleich zur Variante 1 der Anschlussverlustkoeffizient nochmals um ca. 17 % reduziert werden. Der Wert für die um 90° verdrehte Einbaulage zeigt allerdings, dass die richtige Einbaulage für diese Variante wichtig ist. Die Variante 3 mit größerem Kanalquerschnitt zeigt einen ähnlichen Anschlussverlustkoeffizienten wie die Variante 2. Durch die schneckenförmige Strömungsführung bei der Variante 4 konnte der Anschlussverlustkoeffizient auf unter 0,2 W/K reduziert werden. Die Variante 5 mit größerem Schneckendurchmesser ist nur geringfügig schlechter. Die Variante 6 weist demgegenüber einen deutlich höheren Anschlussverlustkoeffizienten auf, wobei es keine Rolle spielt, ob die Strömung nach oben oder unten umgelenkt wird.

Die Abbildung 44 zeigt die Anschlussverlustkoeffizienten der Varianten 7 bis 11.

Abbildung 44: Anschlussverlustkoeffizienten der Varianten 7 bis 11

Durch die Variante 7 mit der 180°-Schraubenfläche konnte der Anschlussverlustkoeffizienten nicht reduziert werden. Wird die Verdrehung jedoch auf 360° erhöht (Variante 8), so lässt sich der Anschlussverlustkoeffizient auf 0,28 W/K reduzieren. Allerdings ist auch hier auf die Einbaulage zu achten, da z. B. bei einer um 90° gedrehten Einbaulage sich der Anschlussverlustkoeffizient auf 0,41 W/K erhöht. Der Anschlussverlustkoeffizient von Variante 9 (ohne Hülse) ist ebenfalls deutlich höher als derjenige der Variante 8. Dies ist vermutlich auf die schlechtere Abdichtung zur Rohrinnenwand zurückzuführen. Zur besseren Abdichtung sind die Variante 10 und 11 mit einem flexiblen Kunststoff hergestellt worden. Dadurch konnte bei der Variante 10 der Anschlussverlustkoeffizienten auf 0,33 W/K bis 0,35 W/K reduziert werden. Die Einbaulage spielt hier praktisch keine Rolle mehr. Durch die Variante 11 mit einer 540°-

Schraubenfläche konnte der Anschlussverlustkoeffizient mit 0,2 W/K um über 60 % reduziert werden im Vergleich zum Rohr ohne MZB.

Abbildung 45 zeigt den gemessenen Druckverlust der MZB-Varianten 1 bis 6 bis zu einem Volumenstrom von ca. 1000 l/h. Mit Ausnahme der Varianten 4 und 5 zeigen alle MZB-Varianten einen geringeren Druckverlust als die LKB (vgl. Abbildung 37).

Abbildung 45: Druckverlust der Varianten 1 bis 6

Abbildung 46 zeigt, dass der Druckverlust für die Varianten 7 bis 11, die alle das Prinzip der Schraubenfläche nutzen, nochmals um eine Zehnerpotenz niedriger ist als bei den Varianten 1 bis 6 (mit Ausnahme von Variante 4). Der Druckverlust der Variante 11 ist niedriger, als der der Variante 8, obwohl die Variante 11 eine zusätzliche Verdrehung von 180° aufweist. Dies kann darin begründet sein, dass das flexiblere Material von Variante 11 bei hohen Volumenströmen nachgibt. Außerdem ist der verbleibende Strömungsquerschnitt bei Variante 11 aufgrund der fehlenden Hülse größer als bei Variante 8. Die Variante 11 wurde somit zur finalen Version dieser Entwicklung erklärt, da sie neben dem kleinsten Anschlussverlustkoeffizienten auch einen sehr geringen Druckverlust aufweist, der noch niedriger ist als bei den untersuchten Siphons aus Wellrohr oder Kupfer.

Abbildung 46: Druckverlust der Varianten 7 bis 11

Die vorgestellten Varianten wurden alle für einen 1 ¹/₂"-Anschluss entwickelt, wie er für die direkte Be- und Entladung an Kombi- oder Pufferspeichern bis zu einem Volumen von ca. 1500 l häufig verwendet wird. Auch der im Rahmen dieses Projekts entwickelte Standard-kombispeicher verfügt über diese Anschlussgröße für die direkte Be- und Entladung des Speichers. Die Anschlüsse für die Wärmeübertrager oder die Anschlüsse für Kalt- und Warmwasser sind oft kleiner ausgeführt (z. B. 1") und verfügen dann über ein Außengewinde. Dies ist auch beim Standard-Trinkwasserspeicher der Fall. Außerdem fehlt bei Anschlüssen für Wärmeübertrager natürlich das Prallblech, sodass die vorgestellte Konstruktion der Variante 11 nicht eingesetzt werden kann. Für diese Anschlüsse mit Außengewinde wurde eine neue Variante entwickelt (siehe Abbildung 47), die über einen "Stützring" verfügt, der sich stirnseitig am Anschlussstutzen abstützt und durch eine flachdichtende Verschraubung fixiert wird.

Abbildung 47: MZB für Anschlüsse mit Aussengewinde

6 Regelung (AP 5); ISE

6.1 Marktanalyse Solarregler (AP 5.1)

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.

6.2 Prüfung Solarregler (AP 5.2)

Am ITW wurde ein Solarregler für eine Kombianlage nach EN 12977-5:2018 geprüft. Es handelte sich hierbei um einen Regler, der ausschließlich für die Regelung von Solaranlagen mit Vakuum-Röhrenkollektoren bestimmt ist, bei denen im Kollektorkreislauf Wasser als Wärmeträgermedium eingesetzt wird. Deshalb verfügt der Regler zusätzlich über eine Frostschutzfunktion für die Kollektoren. Außerdem kann der Regler die von der Kollektor-kreispumpe aufgenommene Leistung regeln.

Es erfolgte hier zum einen eine Überprüfung der Genauigkeit der angeschlossenen Messtechnik (Temperaturfühler und Volumenstrommesser des Kollektorkreises) als auch eine Überprüfung der Hochtemperaturbeständigkeit der Temperaturfühler. Alle Temperaturfühler haben die Hochtemperaturbeständigkeit entsprechend der EN 12977-5:2018 ohne optische Auffälligkeiten unbeschadet überstanden. Bei der anschließenden Prüfung der Genauigkeit der Temperaturfühler konnten alle Fühler die nach EN 12977-5:2018 geforderte max. Abweichung einhalten. Ebenso konnte der Volumenstrommesser die geforderte Genauigkeit bei einer Wassertemperatur von 20 °C und 80 °C einhalten.

Außerdem erfolgte die messtechnische Überprüfung der Regelstrategien des Reglers. Der Regler verfügt über eine sehr komplexe Regelstrategie zum Ein- und Ausschalten der Kollektorkreispumpe. Je nach Höhe der Kollektor-, der Kollektorvor- und Rücklauftemperatur sowie der Speichertemperatur oben oder unten und dem eingestellten Warmwassersollwert wird der Beginn einer Einschaltverzögerung bestimmt. Erst wenn mehrere Bedingungen für 10 min erfüllt sind, wird die Kollektorkreispumpe eingeschaltet, es sei denn, die Kollektortemperatur ist höher als 80 °C. Nach dem Einschalten läuft die Kollektorkreispumpe zunächst mit 100 % Leistung für 15 s, danach wird die Leistung reduziert. Diese reduzierte Leistung wird vom Regler aus der selbst ermittelten Anlagengröße bestimmt. Auch für das Ausschalten der Kollektorkreispumpe gibt es mehrere Bedingungen in Abhängigkeit von der Kollektor-, der Kollektorvorund Rücklauftemperatur sowie dem eingestellten Warmwassersollwert und der Laufzeit der Pumpe.

Aufgrund dieser komplexen Regelstrategie bzw. der Vielzahl an Bedingungen, die bei diesem Regler überprüft werden müssen war es mit akzeptablem Zeitaufwand nicht möglich eine vollständige Prüfung nach EN 12977-5:2018 durchzuführen. Die Überprüfung der Regelstrategie für den Volumenstrom der Kollektorkreispumpe war nicht möglich, da hierzu die Pumpe in einer realen Anlage eingebaut sein muss (siehe oben). Erschwerend kam hinzu, dass der Hersteller die Regelstrategien nicht komplett preisgeben wollte. Somit konnten nur die wichtigsten Regelstrategien überprüft werden. Diese konnten alle bestätigt werden.

Weitere Regler wurden vom Fraunhofer ISE geprüft. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 zu entnehmen.

6.3 Kommunikations-Schnittstellen (AP 5.3)

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.

6.4 Definition eines Solarreglerstandards (AP 5.4)

Dieses Arbeitspaket wurde vom Fraunhofer ISE bearbeitet. Die Ergebnisse sind dem KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1) vom Oktober 2019 [5] zu entnehmen.

7 Systemtechnik und Installation (AP 6); ITW

7.1 Systemanalyse (AP 6.1)

Zur Analyse des repräsentativen Querschnitts existierender Solaranlagen und ihrer Komponenten sowie der aktuellen Kosten von Komponenten, Installationsmaterial und Installation wurden Rechnungen der von der BAFA in den Jahren 2015 und 2016 geförderten Solaranlagen analysiert. Insgesamt wurden 115 Rechnungen für Solaranlagen zur Trinkwassererwärmung und 143 Rechnungen für solare Kombianlagen von der BAFA zur Verfügung gestellt und ausgewertet.

7.1.1 Verrohrung, Verbindungstechnik und Wärmedämmung:

Die von der BAFA zur Verfügung gestellten Rechnungen wurden bezüglich der Verrohrung, Verbindungstechnik und Wärmedämmung getrennt nach Anlagentyp (Solaranlage zur Trinkwassererwärmung und Kombianlage) und hydraulischem Kreislauf ausgewertet.

7.1.1.1 Solaranlagen zur Trinkwassererwärmung

Es konnten die Rechnungen von 39 Anlagen ausgewertet werden, alle anderen Rechnungen wiesen keine detaillierte Angabe der Verrohrung, Verbindungstechnik und Wärmedämmung auf. Abbildung 48 zeigt die verwendeten Verrohrungsarten für den Kollektorkreis, Abbildung 49 zeigt die verwendeten Größen für das Edelstahl-Wellrohr und Abbildung 50 zeigt die Abmessungen für die verwendeten Kupferrohre. Abbildung 51 zeigt die Materialien, die für die anderen hydraulischen Kreise (Heizung, Nachheizung, Trinkwasser) verwendet wurden.

² Das Material des Universalrohrs konnte der Rechnung nicht entnommen werden

7.1.1.2 Kombianlage

Bei den Kombianlagen konnten die Rechnungen von 40 Anlagen ausgewertet werden, alle anderen Rechnungen wiesen keine detaillierte Angabe der Verrohrung, Verbindungstechnik und Wärmedämmung auf. Abbildung 52 zeigt die Verrohrungsarten für den Kollektorkreis, Abbildung 53 zeigt die Abmessungen für die verwendeten Wellrohre und Abbildung 54 die Abmessungen für die verwendeten Kupferrohre. Eine Befragung unter den Projektteilnehmern folgendes Ergebnis: Kollektorkreis wird bevorzugt wärmegedämmtes ergab Im Schnellmontagerohr entweder als Edelstahl-Wellrohr oder als Kupferrohr (weich) verwendet. Als Verbindung wird die Klemmringverschraubung bevorzugt. Alternativ wird gelötet (hart). Bei den anderen hydraulischen Kreisen wird bevorzugt Kupferrohr mit Klemmringverschraubungen verwendet. Wenn es die Anschlüsse der Komponenten erfordern, werden auch entsprechende flachdichtende Verschraubungen oder Gewindedichtungen wie z. B. am Speicher eingesetzt. Die Wärmedämmung erfolgt nach EnEV Anhang 5 mit einer Mindestdicke von 20 mm (=0.035 W/(m·K)) für Rohre bis 22 mm Innendurchmesser. Angaben zum Material wurden von den Herstellern nicht gemacht. Für den Kollektorkreis wird meist ein UVund witterungsbeständiges Wärmedämmmaterial verwendet mit einer Temperaturbeständigkeit bis 150 °C.

Abbildung 54: Abmessungen Kupferrohr

Abbildung 53: Abmessungen Wellrohr

Abbildung 57: Abmessungen Kupferrohr

Abbildung 58 zeigt die verwendeten Materialien für die anderen Kreise. Als Wärmedämmung für diese Kreise wurden meist Mineralfaserschalen verwendet. Zur Verbindungstechnik konnten nur sehr wenige Angaben gefunden werden, meist werden Übergangsverschraubungen erwähnt.

Rohrmaterial nach Anlagen

Abbildung 56: Abmessungen Wellrohr

Rohrmaterial nach Anlagen

Abbildung 58: Rohrmaterial andere Kreise

7.1.2 Solarstationen

Den Unterlagen der BAFA konnten leider keine detaillierten technischen Spezifikationen zu den installierten Solarstationen und Pumpen entnommen werden. Zur Analysierung der eingesetzten Solarstationen wurde deshalb eine Recherche von Produktunterlagen durchgeführt. Es wurden insgesamt 20 Solarstationen untersucht, davon waren 19 sogenannte Zweistrang-Stationen, bei denen sowohl der Vor- als auch der Rücklauf angeschlossen wird. Vier der untersuchten Stationen können direkt an den Speicher montiert werden. Die Wärmedämmung besteht bei fast allen Stationen aus EPP-Schalen, bei einer Station wird eine PUR-Schale verwendet. Im Gegensatz dazu weisen die Anschlüsse eine deutlich höhere Vielfalt auf. Bei der Hälfte der Stationen wird ein ³/₄⁴⁺-Innengewinde verwendet, es gibt aber auch Stationen mit 1⁺⁺-Innengewinde (2 Stck.), 5/4⁺⁺-Innengewinde (1 Stck.), 1⁺⁺-Klemmringverschraubung (1 Stck.), ³/₄⁴⁺⁺-Aussengewinde mit Flachdichtung (3 Stck.). 3 Stationen werden mit verschiedenen Anschlussarten oder Anschlussgrößen angeboten.

Was die Ausstattung der Stationen anbelangt, so haben nur 2 Stationen einen Volumenstromsensor standardmäßig eingebaut, bei weiteren 5 Stationen ist dieser optional erhältlich. Eine Volumenstromanzeige besitzt der Großteil der Stationen (17 Stck.). Zehn der Stationen sind mit einer, weitere neun mit 2 Schwerkraftbremsen ausgestattet. Eine Station ist mit einem einer sogenannten "thermischen Dämmschleife" Magnetventil und statt einer Schwerkraftbremse ausgestattet. 15 Stationen sind mit einem automatischen Luftabscheider ausgestattet, während die anderen nur einen manuellen Luftabscheider aufweisen. Zum Anschluss des Membran-Ausdehnungsgefäßes (MAG) ist bei den meisten Stationen ein 34"-Aussengewinde mit Flachdichtung vorgesehen. Alle Stationen sind mit Absperrventilen, Füllund Entleerhähnen, analogem Manometer sowie einem 6-bar-Sicherheitsventil ausgestattet. Bis auf 2 Stationen sind alle auch mit analogen Thermometern für den Vor- und Rücklauf ausgestattet. Eine Station ist mit elektronischen Temperatursensoren für Vor- und Rücklauf ausgestattet. Bei 7 Stationen ist bereits ein Regler integriert, bei insgesamt 16 Stationen ist ein Regler integrierbar.

Elf Stationen beinhalten eine Hocheffizienzpumpe, bei weiteren sieben Stationen ist eine Hocheffizienzpumpe optional erhältlich. 14 Stationen sind für einen Betriebsdruck bis 6 bar zugelassen, weitere fünf Stationen bis zu einem Betriebsdruck von 10 bar, eine Station bis 8 bar.

Die meisten Stationen (12 Stck.) sind vom Hersteller für eine max. Betriebstemperatur von 120 °C zugelassen, 4 Stationen sogar bis 160 °C. Eine Station ist bis zu einer Temperatur von 140 °C, eine weitere bis 110 °C (kurzzeitig bis 130 °C) zugelassen. Die Einstrang-Station ist nur bis zu einer Temperatur von 95 °C zugelassen da sie nur im Kollektorrücklauf eingebaut ist.

Die Abmessungen der Stationen sind uneinheitlich: Die Breite der Stationen liegt zwischen 180 mm und 380 mm, die Höhe zwischen 365 mm und 671 mm und die Tiefe zwischen 120 mm und 250 mm.

7.1.3 Montageanleitungen

Für die Analyse der Montageanleitungen (vgl. Anhang F: Analyse der Montageanleitungen) wurden mehrere Bewertungsverfahren herangezogen sowie die Anleitungen verschiedener Hersteller miteinander verglichen. Zusätzlich wurde ein erster Vergleich mit Anleitungen aus anderen Branchen durchgeführt, die sich im Massenmarkt als leicht verständlich erwiesen haben, wie Anleitungen von Ikea oder Lego. Zunächst erfolgte die Bewertung der Anleitungen jedoch auch anhand der DIN EN 82079-1 Anhänge B (Checkliste Konformität und Kommentare) und C (Checkliste Effektivität der Kommunikation). Neben einer reinen Prüfung mit den Checklisten wurden hier zunächst objektive Grenzwerte für ungenau formulierte Kriterien festgelegt. Weiterhin wurde eine individuelle Bewertung der Anleitungen vorgenommen, bei der die besonderen Nutzungsumstände beachtet werden, etwa die Nutzung der Anleitung auf einem Hausdach. Hierbei sind besondere Anforderungen an die Lesbarkeit, den Umfang und die Anzahl der nötigen Anleitungen zu stellen. In diesem Schritt wurde auch geprüft, ob die Anleitungen besondere Arbeitserleichterungen unterstützen, etwa die Vormontage verschiedener Teile, um auf dem Dach die Anzahl notweniger Arbeitsschritte zu reduzieren. Neben der objektiven Bewertung wurden auch Hersteller und Nutzer zu häufig auftretenden Problemen bei der Nutzung dieser Anleitungen befragt.

Im Vergleich haben die Anleitungen der Hersteller Citrin Solar, Paradigma und Solvis ein hohes Qualitätsniveau gezeigt, jedoch mit Verbesserungspotenzial in Details, welche die Verständlichkeit und die Einfachheit der Nutzung weiter erhöhen würden. Defizite sind besonders in der zu hohen Seitenzahl, der zu großen Textmenge und der Abgrenzung verschiedener Montagevarianten zueinander zu erkennen. Tiefergehende Verbesserungspotenziale betreffen etwa mögliche Fehler von Position und Richtung beim Einbau von Teilen, die in den Anleitungen zwar auffällig beschrieben werden, über Poka Yoke³ jedoch gänzlich vermieden werden könnten.

In einer weiterführenden Analyse wurde für die Montageanleitungen ein Lesbarkeitsindex ermitteln. Hierfür wurde die Wiener Sachtextformel eingesetzt, die speziell auf deutschsprachige Texte ausgerichtet ist. Die Wiener Sachtextformel berücksichtig den prozentualen Anteil an Wörtern mit drei oder mehr Silben, den prozentualen Anteil an Wörtern mit mehr als sechs Buchstaben, den prozentualen Anteil an einsilbigen Wörtern und die durchschnittliche Satzlänge, gemessen an der Anzahl der Wörter. Der Index gibt in etwa die Schulstufe an, für die ein Text geeignet ist. Der Wert 4 entspricht dabei einem sehr leichten Text, 12 einen schweren Text und 15 und mehr einen extrem schwierig zu lesenden Text. Da

³ Der japanische Ausdruck Poka Yoke bezeichnet ein aus mehreren Elementen bestehendes Prinzip, welches technische Vorkehrungen bzw. Einrichtungen zur Fehlerverhinderung umfasst. Typische Beispiele sind u.a. sogenannte TAE-Telefonstecker, die sich nicht verkehrt herum einstecken lassen, die Abfrage der oberhalb der Rollen befindlichen Einkaufswagennummer an der Supermarktkasse, um Kassierer zum Blick auf die untere Ablage des Wagens zu zwingen oder unterschiedliche Durchmesser von Zapfpistolen an Tankstellen, um versehentliches Tanken eines falschen Kraftstoffs zu verhindern.

die vorliegenden Montageanleitungen im Allgemeinen nur wenig Fließtext beinhalten, wurden aus verschiedenen Teilen der Anleitungen Texte zusammenkopiert. Es wurden bei allen Herstellern Ausschnitte aus der Anleitung für den Kollektor bzw. die Dachhaken entnommen. In Summe haben die einzelnen Texte zwischen 1500 und 1700 Zeichen. Für die bewerteten Montageanleitungen ergaben sich Indizes von 12.5, 12.9 und 16.8. Insgesamt ist dieses Ergebnis als befriedigend zu bewerten. Hervorzuheben sind aber auch die vielen kurzen Sätze (teilweise in Listenform), die gut zu lesen sind und überflogen werden können. Der hohe Wert von 16.8 ist u. a. damit zu begründen, dass viele lange Fachwörter verwendet werden. Besonders positiv ist in einer Anleitung das Kapitel »Einfache-Bedienung« aufgefallen, welches auf die Endbenutzer ausgerichtet ist. Dieses Kapitel erreichte einen Lesbarkeitsindex von 9,9 und bestätigte damit die Einfachheit des Textes.

Aufgrund der Erkenntnisse aus der ersten Analyse und der weiterführenden Analyse wurden Empfehlungen für eine sinnvolle Gliederung, übersichtliche Grafiken und einfache Textverständlichkeit abgeleitet.

Empfehlungen für die Gliederung:

- Grundsätzlich wird ein Aufbau empfohlen, der die chronologische Verwendung des Produkts widerspiegelt. Beispielsweise in dieser Form:
 - o Informationen zur Anleitung
 - o Sicherheitshinweise
 - Auspacken der Komponenten
 - Hydraulische Varianten
 - o Aufdachmontage
 - o Flachdach-/Wandmontage
 - o Indachmontage
 - 0
 - o Inbetriebnahme
 - o Wartung
 - o Außerbetriebnahme
 - o Entsorgung
- Sehr lange Kapitel sollten sinnvoll unterteilt werden. Für optionale Montagemöglichkeiten sollte ein eigenes Unterkapitel verfasst werden.
- Herausnehmbare oder hervorgehobene Checklisten zu Beginn eines Kapitels sind hilfreich für Handwerker, die nicht regelmäßig mit dem jeweiligen System arbeiten.
- Empfehlungen zu Beginn eines Kapitels (ggf. in Checkliste integrieren) für Tätigkeiten, die auf dem Boden durchgeführt und vorbereitet werden können, um einfachere und kürzere Arbeiten auf dem Dach zu ermöglichen.

Empfehlungen für die Grafiken:

- Alle benötigten Informationen direkt in die Illustration verarbeiten, sodass nicht im Text und im Bild gesucht werden muss, z. B. Bohrer-Durchmesser, Bohrtiefe, Gewichtverteilung.
- Nur selbsterklärende bzw. bekannte Symbole verwenden (z. B. nach DIN ISO 3864).
- Erwartungskonforme Nummerierung, z. B. links oder oben mit Nummer 1 beginnen

- Einheitliches Grafikdesign, Verzicht auf Fotos und Rendering, vorzugsweise Illustrationen verwenden.
- Sichtkontrollen und Geräusche in Grafiken verarbeiten, z.B. ein Einrasten mit »klick« kennzeichnen.

Empfehlungen für die Textverständlichkeit:

- Zweispaltiger Textsatz für kurze Zeilenlängen und nicht zu viel ungenutzten Raum.
- Kapitel »einfache Bedienung« auch in einfacher Sprache.
- Grafik und zugehöriger Text direkt beieinander.
- Arbeitsschritte in nummerierter Liste in aktiver Form, z. B. »3. Ziehen Sie die Schrauben an.«.
- Lange Sätze vermeiden.

Ausgewogenes Verhältnis zwischen Text und Bild. Bilder ohne Text können mögliche Fragen nur schwer klären, Text ohne Bilder ist unübersichtlich, da Bilder meist verständlicher sind.

7.2 Anlagenanalyse (AP 6.2)

In AP6.2 (Anlagenanalyse) wurden ausgesuchte Anlageninstallationen (Feldanlagen) im Hinblick auf installationsbedingte Mängel, die durch Standardisierung vermieden werden könnten, analysiert. Des Weiteren wurden ausgewählte Installationen von Solaranlagen durch das Handwerk wissenschaftlich durch das Fraunhofer IAO begleitet. Dabei erfolgt eine vertiefende Analyse der einzelnen Arbeitsschritte im Hinblick auf Ergonomie und Effizienz bzw. auf Zeit, Kosten sowie Material- und Werkzeugeinsatz.

7.2.1 Bestehende Anlagen (Feldanlagen)

Im Rahmen des AP 6.2 sollten ausgesuchte Anlageninstallationen im Hinblick auf installationsbedingte Mängel, die durch Standardisierung vermieden werden könnten, analysiert werden. Da im Rahmen dieses Projekts keine bestehenden Feldanlagen untersucht von den Projektpartnern bereitgestellt werden konnten wurde eine Untersuchung von Anlagen ausgewertet, die zur Evaluierung des MAP im Jahr 2009 in der BRD durchgeführt wurde. Im Rahmen dieser Untersuchung wurden insgesamt 22 Solaranlagen zur Trinkwassererwärmung und 17 Kombianlagen vor Ort auf Mängel hinsichtlich der Wärmedämmung, der Regelung, der Hydraulik, des Frostschutzes und des Druckes im Kollektorkreis überprüft. Außerdem wurde eine Untersuchung [6] von 1151 thermischen Solaranlagen in den Jahren 2015 und 2016 in der Schweiz herangezogen.

7.2.1.1 Evaluierung des MAP in der BRD

Die häufigsten Mängel bei der Evaluierung des MAP in der BRD wurden bei der Wärmedämmung der Anlagen vorgefunden. Am häufigsten werden die Anschlüsse von Kollektoren und Speichern nicht gedämmt. Abbildung 69 zeigt, dass bei ca. 59 % der Anlagen die Anschlüsse der Kollektoren nicht wärmegedämmt waren. Bei ca. 7 % der Anlagen waren die Anschlüsse teilweise wärmegedämmt und nur bei ca. 1/3 der Anlagen waren alle Anschlüsse gut wärmegedämmt. In Abbildung 60 ist ein typisches Beispiel für ungedämmte Kollektoranschlüsse dargestellt.

Abbildung 59: Wärmedämmung der Kollektoranschlüsse

Abbildung 60: Beispiel Kollektoranschlüsse ohne Wärmedämmung

Die Anschlüsse der Speicher waren noch schlechter wärmegedämmt, vgl. Abbildung 61. Hier wurden bei fast 2/3 aller Anlagen die Anschlüsse nicht wärmegedämmt, bei weiteren 8 % wurden die Anschlüsse nur teilweise wärmegedämmt und nur bei etwa ¼ aller Anlagen waren die Speicheranschlüsse gut wärmegedämmt. In Abbildung 62 ist ein typisches Beispiel ungedämmter Speicheranschlüsse dargestellt.

Abbildung 61: Wärmedämmung der Speicheranschlüsse

Abbildung 62: Beispiel ungedämmte Speicheranschlüsse

Etwas besser sieht es bei der Wärmedämmung der Rohrleitungen aus. Abbildung 63 zeigt, dass bei ca. 38 % der Anlagen die Rohrleitungen mangelhaft, d. h. mit großen Lücken oder gar nicht wärmegedämmt waren. Bei etwa 1/3 der Anlagen waren die Rohrleitungen gut, d. h. nach Vorschrift oder optimal, d. h. noch besser wärmegedämmt. In Abbildung 64 ist ein typischer Fall ungedämmter Rohrleitungen dargestellt.

Abbildung 63: Wärmedämmung der Rohrleitungen

Abbildung 64: Beispiel ungedämmte Rohrleitungen

Ein Grund für die schlechte Wärmedämmung der Anschlüsse könnte neben der Unkenntnis der Installateure über die Auswirkungen auf das thermische Verhalten der Anlage die Tatsache sein, dass zur Wärmedämmung der Anschlüsse meist andere Größen oder Formen als für die Rohrwärmedämmung nötig sind. Diese sind dann vor Ort nicht vorhanden, bzw. es ist extrem zeitaufwändig für die Installateure die nötigen Formen vor Ort herzustellen. Um hier Abhilfe zu schaffen müssten die Hersteller entsprechende, standardisierte Wärmedämmteile mit dem Kollektor oder dem Speicher liefern. Hier ist es von vor Vorteil, wenn die Anschlüsse von Speicher und Kollektor nach AP4 bzw. AP2 standardisiert sind, da sich hierdurch die nötige Anzahl an Wärmedämmformteilen reduziert.

Die Inspizierung der Anlagenhydraulik führte zu einem guten Ergebnis. Bei ca. 72 % der Anlagen war die Hydraulik gut, d. h. mängelfrei installiert, bei weiteren 18 % sogar optimal, d. h. beispielsweise mit Thermosiphons an den Speicheranschlüssen. Nur bei ca. 8 % der Anlagen war die Hydraulik mangelhaft, also z. B. mit fehlenden Armaturen und bei ca. 3 % der Anlagen war die Hydraulik falsch, also z. B. Vor- und Rücklaufanschluss vertauscht oder falscher Wärmeübertrager angeschlossen.

Durch die Standardisierung der Komponenten kann dieses Ergebnis weiter verbessert werden wie z. B. durch in den Speicheranschlüssen integrierte Mikro-Zirkulationsbremsen oder vorinstallierte Baugruppen. Ebenso könnte durch Standardisierung falsche Hydraulik weiter reduziert werden: Wenn alle Anlagen gleich aufgebaut sind und die Installationsanleitung standardisiert, also eindeutig und einfacher lesbar ist werden sich die Installationsmängel in diesem Bereich weiter reduzieren.

Abbildung 65: Bewertung der Hydraulik der Anlagen

Nur bei 2 der inspizierten Anlagen wurden Undichtigkeiten innerhalb der Solarstation und den Speicheranschlüssen festgestellt. Bei der Solarstation handelt es sich nicht um einen installationsbedingten Mangel, da diese im Werk vorinstalliert wird, bei den Speicheranschlüssen schon. Hier wurden die Gewinde nicht richtig eingedichtet. Abhilfe können hier die in z. B. flachdichtende (standardisierte) Speicheranschlüsse leisten.

Bei der Überprüfung der Regelung und des Frostschutzes gab es keine Beanstandungen.

Abbildung 66: Druck im Kollektorkreis

Abbildung 66 zeigt den am Manometer im Kollektorkreis abgelesenen Druck für alle inspizierten Anlagen. Dieser war für die meisten Anlagen in Ordnung. Bei 4 Anlagen war der Druck zu niedrig (unter 1 bar). Obwohl die Anlagen alle funktionierten, ist bei diesem Druck ein zuverlässiger Anlagenbetrieb nicht mehr gewährleistet. Abhilfe könnte hier ein Drucksensor in der Solarstation schaffen, welcher bei Drücken unter 1 bar ein akustisches Warnsignal abgibt.

7.2.1.1 Evaluierung der Ergebnisse der Untersuchungen in der Schweiz

Von den 1151 in der Schweiz in den Jahren 2015 und 2016 geprüften Anlagen wurden 23,3% mit "Gut", 47,5% mit "Verbesserungspotential", 28,3% mit "Handlungsbedarf" und 0,9% mit "Defekt" bewertet. "Gut" bedeutet hier, die Solaranlage funktioniert gut – es gibt keine Empfehlung. "Verbesserungspotential" bedeutet, die Solaranlage funktioniert, einzelne Details können jedoch noch optimiert werden. "Handlungsbedarf" heißt, die Solaranlage funktioniert, es besteht jedoch Handlungsbedarf. Es wird empfohlen, Kontakt mit dem Installateur aufzunehmen. "Defekt" bedeutet, dass die Anlage nicht funktioniert.

Häufigster Fehler waren auch bei dieser Untersuchung die Wärmedämmung der Speicheranschlüsse, die in 46 % der Anlagen verbesserungswürdig waren. Bei ca. 14 % der Anlagen war die Wärmedämmung des Kollektorkreises unvollständig. Bei ca. 9 % der Anlagen war der Kollektorkreis nicht wärmegedämmt. Die Wärmedämmungen der Speicher wurden dagegen zu 98 % als gut bewertet. Dies hängt damit zusammen, dass diese Wärmedämmteile vorkonfektioniert sind. Dies fehlt für die Anschlüsse der Speicher. Trotz Aufnahme der Siphonierung der Speicheranschlüsse in der Ausbildung in der Schweiz, werden diese in der Praxis nicht realisiert. Dies zeigt die Wichtigkeit, diese in die Anschlüsse ab Werk zu integrieren, bzw. die Speicheranschlussstutzen (standardisiert) nach unten zu führen.

Bei ca. 10 % der Anlagen wurde der minimale Betriebsdruck im Kollektorkreis unterschritten.

Was die Dichtigkeit der Anlagen anbelangt, so war das Ergebnis dieser Untersuchung deutlich schlechter als das in der BRD: Bei ca. 12 % der Anlagen bestand hier Handlungsbedarf. Es kann dem Bericht leider nicht entnommen werden, wo die Undichtigkeiten aufgetreten sind, es ist allerdings zu vermuten, dass die Verbindungen hier Probleme bereiten. Standardisierte Schnellmontageanschlüsse können hier die Zuverlässigkeit der Anlagen bezüglich der Dichtheit verbessern.

Bei ca. ³⁄₄ aller Anlagen wurde außerdem die Anlagendokumentation als verbesserungswürdig eingestuft. Hier könnten evtl. auch standardisierte Dokumente die Arbeit der Installateure erleichtern und dadurch zu einer besseren und häufigeren Dokumentation der Anlage führen.

7.2.2 Installationsbegleitung

Insgesamt wurde die Installation von 4 Solaranlagen durch das Fraunhofer IAO begleitet. Dabei sind folgende, im Anhang enthaltene Berichte entstanden.

- Anhang G: Bericht Montagebegleitung Paradigma
- Anhang H: Bericht Montagebegleitung Solvis
- Anhang I: Bericht Montagebegleitung Citrin
- Anhang J: Bericht Montagebegleitung Weishaupt
- Anhang K: Zusammenfassender Bericht zur Montagebegleitungen

7.3 Potentialanalyse (AP 6.3)

Zur Ermittlung der Ertragsminderung durch Installationsdefizite wurden experimentelle Untersuchungen durchgeführt. Hierzu wurde zunächst der Einfluss einer unzureichenden Wärmedämmung an einem Kombispeicher mit einem Volumen von 750 Litern und an einem Trinkwasserspeicher mit einem Volumen von 400 Litern untersucht. Beim Kombispeicher wurden 10 Anschlüsse mit einem Durchmesser von 1 1/2" nicht wärmegedämmt wobei die Anschlüsse kürzer waren als die Stärke der Manteldämmung, also nicht aus der Wärmedämmung herausragten. Es zeigte sich, dass mit wärmegedämmten Anschlüssen der Speicher eine Wärmeverlustrate von 2,3 W/K aufwies, mit nicht gedämmten Anschlüssen ergab sich ein Wert von 2,69 W/K. Übertragen auf die Standardkombianlage würden die LCoH_{sol,fin} (Levelized Cost of Heat) dadurch mit wärmegedämmten Anschlüssen von 14,2 €t/kWh auf 14,0 €t/kWh, sinken also um ca. 1,4 % bei Verwendung von 10 Wärmedämmkappen zu insgesamt €60,-.

Beim Trinkwasserspeicher wurden alle 7 Anschlüsse 10 cm unmittelbar am Speicher nicht wärmegedämmt (siehe Abbildung 67). Die Wärmeverlustrate stieg dadurch von 2,56 W/K auf 2,68 W/K. Übertragen auf die Standardsolaranlage zur Trinkwassererwärmung steigen die LCoH_{sol,fin} dadurch von 9,5 €t/kWh auf 9,6 €t/kWh. Kosten für das zusätzliche Wärmedämmmaterial wurden hier nicht berücksichtigt, da davon ausgegangen wird, dass dieses bei der geringen Menge aus dem Verschnitt verwendet werden kann.

Abbildung 67: Trinkwasserspeicher mit nicht wärmegedämmten Anschlüssen

Es folgte eine weitere Untersuchung der Ertragsminderung durch typische Installationsdefizite bzw. –Fehler wie unzureichende Wärmedämmung von Anschlüssen an Kollektor und Speicher und das Fehlen von Mikrozirkulationsbremsen an einer Solaranlage zur Trinkwassererwärmung im Rahmen von Systemprüfungen nach EN 12976-2. Hierzu wurde eine Solaranlage zur Trinkwassererwärmung mit einem bivalenten Trinkwasserspeicher mit einem Nennvolumen von 400 Litern und 3 Flachkollektoren mit einer Bruttofläche von insgesamt 7,65 m² im dynamischen Sonnensimulator geprüft. Bei der Prüfung der Variante 1 wurden hierbei die Anschlüsse des Kollektors und des Speichers nicht wärmegedämmt (siehe Abbildung 68 und Abbildung 69). Außerdem waren die Speicheranschlüsse nicht mit Mikrozirkulationsbremsen (MZB) versehen. Ebenso waren die hydraulischen Verbindungen zwischen den Kollektoren nicht wärmegedämmt.

Abbildung 68: Speicher und Kollektor mit nicht wärmegedämmten Anschlüssen

Abbildung 69: Kollektoren mit nicht wärmegedämmtem Anschluss am Kollektoraustritt (siehe roter Kreis)

Bei der Prüfung der Variante 2 waren alle Anschlüsse sorgfältig wärmegedämmt und die Speicheranschlüsse für den Eintritt aus dem Kollektorkreis (Kollektorvorlauf), Vor- und Rücklauf der Nachheizung und Warmwasseraustritt waren mit Mikrozirkulationsbremsen (MZB), ausgeführt als Z-Siphon, versehen (siehe Abbildung 70, Abbildung 71 und Abbildung 72).

Abbildung 70: Speicher mit Mikrozirkulationsbremsen (MZB) und sorgfältig wärmegedämmten Anschlüssen (links) und Kollektor mit Wärmedämmung am Kollektoraustritt

Abbildung 71: Kollektor mit wärmegedämmtem Anschluss des Kollektoreintritts

Abbildung 72: Wärmegedämmte hydraulische Kollektorverbinder

Abbildung 73 zeigt beispielhaft für den Standort Würzburg die solaren Deckungsanteile f_{sol} für die Varianten 1 und 2 sowie die relative Differenz für verschiedene tägliche Trinkwarmwasserlasten. Es ist zu erkennen, dass mit zunehmender Trinkwasserlast die Steigerung des solaren Deckungsanteils f_{sol} durch die verbesserte Wärmedämmung abnimmt. Bei einer Trinkwasserlast von 50 l/d kann der solare Deckungsanteil f_{sol} um ca. 7,5 % (relativ) erhöht werden, bei einer typischen Trinkwasserlast einer 4-köpfigen Familie von 200 l/d kann der solare Deckungsanteil f_{sol} noch um ca. 4 % (relativ) gesteigert werden, während bei einer Trinkwasserlast von 600 l/d fast kein Vorteil durch die verbesserte Wärmedämmung vorhanden ist. Der Grund hierfür ist die Tatsache, dass mit zunehmender Trinkwasserlast der Kollektor-kreis und der Solarteil des Speichers auf einem zunehmend niedrigeren Temperaturniveau

betrieben werden und damit die Wärmeverluste abnehmen, so dass eine zusätzliche Wärmedämmung immer weniger Nutzen bringt.

Abbildung 73: Solare Deckungsanteile f_{sol} für die Varianten 1 und 2, sowie relative Differenz (delta f_{sol}), bezogen auf die Ergebnisse für Variante 1

Die LCoH $_{\rm sol, fin}$ würden bei einwandfreier Installation im hier untersuchten Fall um ca. 8 % reduziert.

7.4 Systemtechnik-Standards (AP 6.4)

7.4.1 Solarstation

Analog zum Kollektor und zum Speicher wurde auch ein Standard für die Solarstation erarbeitet. Hierzu wurden folgende Merkmale für eine Standardisierung als sinnvoll erachtet:

- einheitlicher Achsabstand zwischen Vor- und Rücklaufleitung im Hinblick auf die einfache und schnelle Montage am Speicher
- Festlegung eines max. Maß der rückseitigen Wärmedämmung
- standardisierte hydraulische Anschlüsse
- einheitliche Anordnung der einzelnen Komponenten in der Solarstation, wie z. B. Pumpe, Rückschlagklappe, Ventile, vereinfacht eine schnelle Inbetriebnahme und die Wartung sowie ggf. die Fehlersuche

Einheitliche Gesamtabmessungen der Solarstationen wurden hingegen nicht als vorteilhaft erachtet.

Zur Festlegung eines einheitlichen Achsabstandes zwischen Vor- und Rücklaufleitung wurden insgesamt 21 am Markt erhältliche Solarstationen für Solaranlagen diesbezüglich analysiert.

Abbildung 74 zeigt, dass die meisten Solarstationen einen Achsabstand von 100 mm oder 125 mm aufweisen. Bei einer Solarstation handelte es sich um eine sogenannte Einstrang-Station, bei einer weiteren Solarstation waren die Achsabstände speicher- und kollektorseitig unterschiedlich, bei zwei weiteren Solarstationen konnten keine Daten ermittelt werden, da diese in den verfügbaren Unterlagen nicht angegeben waren. Für diese beiden Solarstationen ist deshalb in der Abbildung 74 keine Eintragung vorhanden. Unter den Projektteilnehmern einigte man sich auf einen Achsabstand von 100 mm, um die Station in ihren Abmessungen nicht unnötig groß werden zu lassen.

Abbildung 74: Achsabstand zwischen Vor- und Rücklaufleitung der untersuchten Solarstationen

Abbildung 75 zeigt die hydraulischen Anschlussarten der untersuchten Solarstationen. Die meisten Stationen (13 Stck.) verwenden ein Innengewinde. Hier hat der Monteur alle Möglichkeiten, muss aber ggf. zusätzliche Übergangsstücke montieren. Fünf Stationen verwenden eine Klemmringverschraubung, 4 Stationen einen flachdichtenden Anschluss, der immer mit einem Außengewinde einhergeht. Zwei Stationen bieten die Möglichkeit sowohl eine flachdichtende Verschraubung als auch eine Klemmringverschraubung zu verwenden.

Abbildung 76 zeigt eine Auswahl der untersuchten Solarstationen. Es ist zu erkennen, dass sich der Aufbau der meisten Stationen sehr ähnelt: Im Vorlaufstrang sitzt, in Strömungsrichtung betrachtet, meist zunächst ein Kugelhahn mit integriertem Thermometer und teilweise noch mit integrierter Schwerkraftbremse bzw. Rückschlagklappe. Im Anschluss daran folgt ein Entlüftungstopf. Im Rücklaufstrang ist zunächst, ebenfalls in Strömungsrichtung betrachtet, ein Drosselventil mit Volumenstromanzeige installiert, teilweise kombiniert mit Befüll- und Entleerventilen. Daran schließt sich die Pumpe und ein Kugelhahn mit integriertem Thermometer und teilweise mit integrierter Schwerkraftbremse bzw. Rückschlagklappe an. Dieser Kugelhahn hat meist noch eine Anschlussmöglichkeit für die Sicherheitsgruppe mit Sicherheitsventil, Manometer und Membranausdehnungsgefäß und evtl. noch einen Befüll-/Entleerhahn.

Abbildung 75: Anschlussarten der Solarstationen (AG: Außengewinde; IG: Innengewinde)

Abbildung 76: Darstellung ausgewählter, untersuchter Solarstationen – Anordnung der einzelnen Komponenten

Abbildung 77 zeigt den Aufbau einer daraus abgeleiteten Standardsolarstation. Um die Kosten und die im Werk für die Montage der Solarstation benötigte Zeit zu reduzieren wurde ein Aufbau gewählt, bei dem möglichst viele Kombielemente, die mehrere Funktionen erfüllen, zum Einsatz kommen. So z. B. Kugelhähne mit integriertem Thermometer und integrierter Schwerkraftbremse oder Volumenstromanzeiger mit Einstellmöglichkeit für den Volumenstrom und Befüll- und Entleerventilen sowie Sicherheitsgruppen mit Manometer, Sicherheitsventil und Anschlussmöglichkeit für das Ausdehnungsgefäß. Im linken, unteren Bereich der Station kann auch ein Regler für Solaranlagen zur Trinkwassererwärmung integriert werden.

Abbildung 77: Aufbau Standardsolarstation

Abbildung 78 zeigt die einfache und schnelle Montage der Solarstation am Speicher mittels flachdichtender Verschraubungen (1").

Abbildung 78: Montage der Solarstation am Speicher

Ein einheitliches Wärmedämmkonzept ist aufgrund der Vereinheitlichung der Montage- und Demontage der Wärmedämmung ebenfalls sinnvoll. Da fast alle untersuchten Solarstationen EPS- bzw. Hartschaumformteile verwenden die über eine Art Nut- und Federsystem zusammengefügt werden, wird dies auch für die Standardsolarstation empfohlen. Eine max. Dämmstärke von 30 mm für die Rückwand darf für die Montage am Speicher nicht überschritten werden.

7.4.2 Kollektorkreis

Die Verbindung des Kollektorfeldes mit der Solarstation erfolgt in der Regel durch ein Schnellmontagerohr, das auch als Standard vorgeschlagen wird. Hierbei handelt es sich um eine wärmegedämmte Kombination aus Vor- und Rücklaufrohr mit eingelegtem Kabel für den Kollektorfühler. Als Rohrmaterial wird entweder Edelstahlwellrohr oder Kupfer (weich) als flexibles Rohrmaterial verwendet. Das Kupferrohr hat den Vorteil, dass es schneller zu entlüften ist. Es ist allerdings nicht so flexibel und daher schwieriger zu verlegen als das Edelstahl-Wellrohr. Außerdem ist der Preis für das Kupferrohr um ca. 5 bis 13 €m höher (Größe DN 20). Als Standardverbindung zwischen Kollektor und Solarstation wird daher die Variante mit Edelstahl gewählt. Der Anschluss an die Solarstation erfolgt über flachdichtende Verschraubungen, die einfach am Ende des Wellrohres hergestellt werden können.

8 Mitarbeit in Normungsgremien und Aktivitäten der IEA SHC (AP 7); ITW

8.1 Normungsarbeit (AP 7.1)

Das Projekt und die bis zu den jeweiligen Zeitpunkten entwickelten Standardkomponenten wurden von Mitarbeitern des ITW/IGTE bei den folgenden Normungstreffen vorgestellt:

- 20. Plenarsitzung von CEN/TC312 am 19.10.2017 in Larnaka, Zypern
- Sitzung des NA 041-01-56 AA "Solaranlagen (SpA CEN/TC 312 und ISO/TC 180)" am 16. Januar 2018 in Köln
- Sitzung des NA 041-01-56 AA "Solaranlagen (SpA CEN/TC 312 und ISO/TC 180)" am 15. Januar 2019 in Köln
- 22. Plenarsitzung von CEN/TC312 am 06.03.2019 in Stockholm, Schweden
- Sitzung des NA 041-01-56 AA "Solaranlagen (SpA CEN/TC 312 und ISO/TC 180)" am 14. Januar 2020 in Köln

8.2 Mitarbeit IEA SHCTask 54 "Price Reduction of Solar Thermal Systems" (AP 7.2)

In seiner Eigenschaft als Leiter der Subtask B der IEA SHC Task 54 "Price reduction of solar thermal systems" hat Dr. Stephan Fischer aktiv folgende Veranstaltungen vorbereitet und aktiv in Form von Moderation und Vorträgen an ihnen teilgenommen:

- 2. IEA SHC Task 54 Treffen, am 02.-03.05.16 in Florenz, Italien
- 3. IEA SHC Task 54 Treffen am 06.-07.10.2016 in Stuttgart
- 4. IEA SHC Task 54 Treffen am 03.05. 04.05.2017 in Rapperswil, Schweiz
- 5. IEA SHC Task 54 Treffen am 05.10. 06.10.2017 in Linz, Österreich
- 6. IEA SHC Task 54 Treffen am 24.04. 25.04.2018 in Sophia Antipolis, Frankreich
- Industrieworkshop am 26.04.2018 in Sophia Antipolis, Frankreich
- Abschlussworkshop der IEA SHC Task 54 im Rahmen der Eurosun 2018 Konferenz am 13.09.2018 in Rapperwil, Schweiz
- 7. IEA SHC Task 54 Treffen am 19.10. 20.10.2018 in Oslo, Norwegen

Im IEA Newsletter vom 17.11.2017 erschien ein umfangreicher Artikel zum 5. IEA SHC Task 54 Treffen den präsentierten Ergebnissen. Dieser ist unter folgendem Link verfügbar:

http://www.solarthermalworld.org/content/iea-shc-task-54-solar-thermal-cost-reductions

Des Weiteren unterstützte bzw. nahm Dr. Stephan Fischer an folgenden Aktivitäten der IEA SHC Task 54 teil:

- Vorstellung der IEA SHC Task 54 im Rahmen der RHC ESTTP Treffen, 25.05.2016, Brüssel, Belgien
- Erstellung eines Fragebogens zur Erhebung der Installationskosten von thermischen Solaranlagen
- Auswertung der von der BAFA zur Verfügung gestellten Rechnungen von Solaranlagen

Darüber hinaus unterstützten die Mitarbeiter des ITW/IGTE die Arbeiten zu den sogenannten "Levelised Costs of Heat" (LCoH). Die Berechnungsmethode zur Ermittlung der solaren

Wärmepreise ist in Form eines Infosheets (Anhang L: IEA SHC Task 54 Info sheet Levelised Cost of Heat (LCoH)) detailliert beschrieben.

Für Deutschland wurde auf der Grundlage der von der BAFA zur Verfügung gestellten Unterlagen sowie des Fachwissens der deutschen Industrievertreter folgende 3 Referenzanlagen inklusive der solaren, konventionellen und gesamten Wärmepreise als Benchmark für die zukünftigen Einsparungen definiert:

- 1. Konventionelle Referenzanlage zur Heizung und Warmwasserbereitung (Anhang M: IEA SHC Task 54 Info sheet Conventional Reference System Germany)
- 2. Solaranlage zur Warmwasserbereitung (Anhang N: IEA SHC Task 54 Info sheet Reference solar domestic hot water system Germany)
- 3. Solaranlage zur Heizungsunterstützung und Warmwasserbereitung (Anhang O: IEA SHC Task 54 Info sheet Reference solar combi system Germany)

Folgende weitere Arbeiten im Rahmen der IEA SHC Task 54 wurden ebenfalls in Form von Info sheets dokumentiert:

- Erarbeitung und Analyse der Produktionskosten eines typischen bivalenten Trinkwasserspeichers (Anhang P: IEA SHC Task 54 Info sheet Production costs of a typical hot water store for domestic hot water application)
- Erarbeitung und Analyse der Produktionskosten eines typischen bivalenten Kombispeichers (Anhang Q: IEA SHC Task 54 Info sheet Production costs of combistores for solar combisystems)
- Kostenreduktion durch Leistungssteigerung von solaren Trinkwassererwärmung (Anhang R: IEA SHC Task 54 Info sheet Cost reduction by performance improvement for solar domestic hot water systems)
- Kostenreduktion durch Leistungssteigerung von solaren Kombianlagen (Anhang S: IEA SHC Task 54 Info sheet Cost reduction by performance improvement for solar combisystems)
- Standard Warmwasserspeicher (Anhang T: IEA SHC Task 54 Info sheet Standardised solar domestic hot water store)
- Standard Kombispeicher (Anhang U: IEA SHC Task 54 Info sheet Standardised solar combistore)

Zusätzlich wurden folgende Informationen aus dem Projekt KoST in Form von Info sheets und Präsentationen während den Arbeitstreffen vorgestellt:

- Analyse der Produktionskosten eines typischen Flachkollektors
- Standardflachkollektor
- Kostenreduktion durch Standardisierung
- Kostenreduktion durch die Kombination unterschiedlicher Maßnahmen

Am 14.03.2018 wurde im Rahmen des Webinar "Price Reduction of Solar Thermal Systems" der IEA SHC Solar Academy einige Ergebnisse des Projekts vorgestellt. Weitere Informationen und die Präsentationen sind unter <u>www.ises.org/webinars/426</u> verfügbar.

Zudem wurde während der Projektlaufzeit aus aktuellem Anlass die Universität Kassel, Institut für Thermische Energietechnik (Prof. Klaus Vajen) im Zusammenhang mit einer bei der DENA vom BMWi beauftragten Studie zur Ermittlung solarthermischer und solarelektrischer Wärmekosten für Einfamilienhäuser unterstützt. Dies vom ITW/TZS hierfür durchgeführten

Arbeiten waren ursprünglich nicht im Arbeitsplan vorgesehen, wurden aber aus Synergiegründen mit dem Projekt KoST durchgeführt. Für die von der Universität Kassel durchgeführte Untersuchung der historischen Kostenentwicklung solarthermischer Anlagen zur Trinkwarmwasserbereitung sowie zur kombinierten Trinkwarmwasserbereitung und Heizungsunterstützung für Ein- und Zweifamilienhäuser wurden für die Jahre 1994 bis 2016 die Leistungskennwerte typischer Flachkollektoren auf Grundlage der Kollektorkennwerte aus normkonformen (DIN, EN, ISO) Prüfungen des Forschungs- und Testzentrums für Solaranlagen (TZS) am Instituts für Thermodynamik und Wärmetechnik der Universität Stuttgart) analysiert und der Universität Kassel zur Verfügung gestellt. In Abbildung 79 sind die Kollektorwirkungsgrade bei einem Betriebskoeffizienten von 0.05 (m² K)/W dargestellt.

Abbildung 79: Veränderung der mittleren Kollektorwirkungsgrade bei einem Betriebskoeffizienten von 0.05 (m² K)/W im Zeitraum von 1994 bis 2016 von am TZS geprüften repräsentativen Kollektoren

8.3 Mitarbeit IEA SHC Task 57 "Solar Standards and Certification" (AP 7.3)

In seiner Eigenschaft als Leiter der Subtask A (Kick-off of the operation of Global Solar Certification Network; GSCN) und Chairman des GSCN hat Herr Dr. Harald Drück maßgeblich bei der Erarbeitung der "Global Solar Certification Network Working Rules" mitgearbeitet. Ergänzend zu redaktionellen Arbeiten erfolgte hierzu die aktive Teilnahme bzw. Leitung mehrerer Internetkonferenzen (Web-Meetings) sowie folgender Treffen:

- Arbeitstreffen der IEA SHC Task 57 am 24. Oktober 2016 in Kairo, Ägypten
- Arbeitstreffen IEA SHC Task 57 am 6. März 2017 in Freiburg
- Arbeitstreffen des Global Solar Certification Networks (GSCN) am 6. und 7. März 2017 in Freiburg

- Arbeitstreffen IEA SHC Task 57 am 29.10.17 in Abu Dhabi, Vereinigte Arabische Emirate (Teilnahme von Dr. Stephan Fischer)
- Arbeitstreffen des Global Solar Certification Networks (GSCN) am 7. März 2018 in Madrid, Spanien
- Arbeitstreffen IEA Task 57 am 8. März 2018 in Madrid, Spanien
- Arbeitstreffen der IEA SHC Task 57 am 10. September 2018 in Rapperwil, Schweiz

Auf der Eurosun 2018 Konferenz in Rapperwil, Schweiz wurde am 12.09.18 von Dr. Harald Drück ein Vortrag zum Thema "Global Solar Certification Network (GSCN) and Global Certification of Solar Collectors" gehalten, bei dem insbesondere über die innerhalb der IEA SHC Task 57 erarbeite harmonisierte Vorgehensweise für die globale Zertifizierung von Sonnenkollektoren berichtet wurde. Ebenso wurde das in der IEA SHC Task 57 weiter implementierte Global Solar Certification Network (GSCN) vorgesellt, dass von Dr. Harald Drück als Chairman geleitet wird.

Nachdem Jan Erik Nielsen angekündigt hatte, seine Tätigkeit als Manager des Global Solar Certification Network (GSCN) zum Ende des Jahres 2018 zu beenden, konnte Shawn Martin von SRCC (Solar Rating and Certification Cooperation) aus den USA als Nachfolger gewonnen werden. Im letzten Quartal des Jahres 2018 wurde die Übergabe der Tätigkeiten von Jan Erik Nielsen an Shawn Martin begleitet und Shawn Martin bzgl. spezifischer Fragestellungen entsprechend eingearbeitet.

Im Hinblick auf das Ende der IEA SHC Task 57 zum 31.12.2018 wurde bei der Erstellung eines sogenannten "Position Papers" zum Thema "Solar Standards and Certification" mitgearbeitet. In diesem Dokument ist der aktuelle Status der Normung und Zertifizierung auf dem Gebiet der Solarthermie beschrieben. Desweitern sind Aspekte aufgeführt, die eine Normung im Bereich solarthermischer Produkte auf internationaler Ebene erschweren bzw. behindern und es werden Vorschläge für Maßnahmen zur Beseitigung dieser Hindernisse unterbreitet. Durch eine Implementierung dieser Maßnahmen könnten insbesondere die Arbeiten zu einschlägigen ISO-Normen (ISO: International Standardisation Organisation) deutlich intensiviert werden.

Am 12. Dezember 2018 wurde anlässlich eines zur Vorstellung der Ergebnisse der IEA SHC Task 57 von ISES (International Solar Energy Society) organisierten Webinars von Dr. Harald Drück ein Vortrag über das "The Global Solar Certification Network (GSCN)" gehalten. Hierbei wurden der Aufbau und die Organisation des GSCN präsentiert sowie erste, unter Anwendung der vom GSCN erarbeiteten Regularien, global zertifizierter Sonnenkollektoren vorgestellt.

Am 26.11.18 wurde von Dr. Harald Drück ein internetbasiertes "GSCN Board-Meeting" geleitet. Die wesentlichen Inhalte waren die Vorstellung des neuen GSCN Managers Shawn Martin sowie die Vorbereitung des für den 7. März 2019 in Stockholm, Schweden geplanten Treffens des Global Solar Certification Network (GSCN). Dieses Treffen wurde insbesondere im Dezember 2018 weiter organisatorisch und inhaltlich vorbereit.

9 Zusammenfassung und Ausblick

Das Ziel des Forschungsprojekts "KoST" (Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen) war die Verringerung des solaren Wärmepreises um ca. 40 % zur weiteren Steigerung der Wettbewerbsfähigkeit der Solarthermie gegenüber anderen Wärmeerzeugungstechnologien. Dieses Ziel sollte primär durch die Reduktion der Produktionskosten z. B. durch eine Vereinheitlichung und verstärkte Massenfertigung sowie durch die Steigerung der thermischen Leistungsfähigkeit z. B. durch die Vermeidung von Installationsfehlern und die Standardisierung von Komponenten wie Kollektor, Speicher, Regler und Montagesystem erreicht werden. Hierdurch wird eine fehlerfreie, einfache, schnelle und somit kostengünstigere Montage möglich.

Der solare Wärmepreis (€t/kWh solar erzeugt) resultiert aus der Wertschöpfungskette ausgehend von der Produktion bis hin zum Betrieb der Solaranlage, vgl. Abbildung 80.

Abbildung 80: Wertschöpfungskette Solaranlage

Die Komponenten (Kollektor, Montagesystem, Speicher, etc.) von solarthermischen Anlagen müssen vor dem Bau konzipiert und konstruiert werden. Für die **Konstruktion** sind Konstrukteure und entsprechende Infrastruktur notwendig.

Für die **Produktion** werden Rohmaterialen wie Kupfer, Aluminium, Stahl, Sand oder Öl benötigt um daraus Halbzeuge wie Kupferrohre, Aluminium und Stahlbleche, Glas oder Kunststoffteile herzustellen die wiederum zu Unterkomponenten wie Absorber Wärmedämmung, Kollektorrahmen oder Wärmeübertrager verarbeitet werden. Im letzten Schritt der Produktion werden die Unterkomponenten zu den Hauptkomponenten der Solaranlage wie Kollektor, Speicher und Regler verarbeitet. Um all diese Produktionsschritte durchzuführen sind Maschinen, Arbeitskräfte und Energie notwendig, zudem fallen Betriebskosten an und ein Gewinn wird erzielt.

Für die **Planung** von Solaranlagen sind Ingenieure, Energieberater und Architekten notwendig die für ihre Dienstleistung einen Gewinn erhalten.

Im **Vertrieb** fallen abhängig vom Vertriebsweg Kosten für Logistik, Marketing, F&E, Arbeit und Betrieb an und zudem wird auch hier ein Gewinn erzielt.

Zur **Installation** werden wiederum Arbeit, Energie und Logistik notwendig, zudem fallen Betriebskosten und Gewinn an.

Während des **Betriebs** der Solaranlage fallen Betriebs- und Wartungskosten in Form von Strom, Wartungsbesuchen und Austausch von Frostschutzmittel und sonstigen Kleinstreparaturen an.

Eine Standardisierung von Komponenten und Schnittstellen führt, eine entsprechende Stückzahl vorausgesetzt, zu einer Kostenreduktion entlang der gesamten Wertschöpfungskette. Die Einflüsse auf die einzelnen Schritte der Wertschöpfungskette sind in Abbildung 81 dargestellt.

Abbildung 81: Einflüsse der Standardisierung von Komponenten und Schnittstellen auf die Wertschöpfungskette einer Solaranlage

Der Konstruktionsaufwand wird verringert da ja durch die Standardisierung schon vieles festgelegt ist wie beispielsweise die Art und Position der Anschlüsse. In der Produktion der Komponenten wie Kollektor und Speicher führt eine Standardisierung u. a. zu geringeren Stückkosten im Einkauf sowie zu geringeren Lagerhaltungskosten und folglich zu einer Reduktion der Produktionskosten. Während der Planung von thermischen Solaranlagen verringert sich der Aufwand durch die standardisierten Komponenten und Schnittstellen. Im Vertrieb durch Systemanbieter oder Großhändler reduzieren sich die Kosten für Verpackung, Lagerung und Logistik. Zudem ermöglichen standardisierte Komponenten und Schnittstellen dem installierenden Gewerbe eine schnellere und fehlerfreie Installation der Solaranlage, so dass sich Installationskosten und Wartungskosten verringern sowie der Energieertrag und die Lebensdauer der Anlage erhöht werden.

Im Rahmen des Projekts wurden für folgende Komponenten Standards bzw. Vorschläge für Standards erarbeitet und festgelegt:

- Flachkollektor
- Kollektorbefestigung
- Regler
- Trinkwasserspeicher
- Kombispeicher
- Mikrozirkulationsbremse
- Solarstation

Unter Verwendung der erarbeiteten Standardkomponenten sowie die konsequente Implementierung standardisierter hydraulischer und mechanischer Schnittstellen für die Kollektor- und Speicheranschlüsse und der daraus resultierenden Standardisierung von Kollektorschnellverbinder und Montagesystemen lassen sich bei entsprechender Massenproduktion die Produktionskosten einer Solaranlage (Trinkwasseranlage und Kombianlage) dergestalt reduzieren, dass eine Reduktion des Verkaufspreises um ca. 10 % möglich sein sollte. Durch die schnellere und fehlerfreie Installation können die Installationskosten um ca. 10 % im Fall einer Trinkwasseranlage bzw. 15 % im Fall einer Kombianlage und die Wartungskosten um ca. 30 % reduziert werden. Gleichzeitig erhöht sich durch eine verbesserte Installation und die Vermeidung von Installationsfehlern der Ertrag und somit die durch die Anlage eingesparte Energie sowie die Lebensdauer um ca. 10 %. In Tabelle 7 sind die Angaben für die, in der IEA SHC Task 54 "Price reduction of solar thermal systems", definierte Referenzanlage (Anhang N: IEA SHC Task 54 Info sheet Reference solar domestic hot water system Germany) zur solaren Trinkwassererwärmung sowie einer "standardisierten" Anlage zur solaren Trinkwasser-erwärmung dargestellt. Tabelle 8 zeigt die Werte für die Kombianlage.

	Referenzanlage	"standardisierte" Anlage	Änderung
Investitionskosten Anlage [€]	2.600	2.340	-10 %
Investitionskosten Installation [€]	1.250	1.125	-10 %
Wartungskosten [€/a]	77	54	-30 %
Betriebskosten [€/a]	20	20	+0 %
Energieeinsparung [kWh/a]	2.226	2.449	+10 %
Lebensdauer [a]	25	27.5	+10 %

Tabelle 7: Kosten, Energieeinsparung und Lebensdauer der Referenzanlage zur solaren Trinkwassererwärmung sowie einer "standardisierten" Anlage zur solaren Trinkwassererwärmung

Tabelle 8: Kosten, Energieeinsparung und Lebensdauer der Referenzkombianlage sowie einer "standardisierten" Kombianlage

	Referenzanlage	"standardisierte" Anlage	Änderung
Investitionskosten Anlage [€]	9.000	8.100	-10 %
Investitionskosten Installation [€]	2.000	1.700	-15 %
Wartung- & Betriebskosten [€/a]	202	148	-27 %
Energieeinsparung [kWh/a]	3.162	3.478	+10 %
Lebensdauer [a]	25	27.5	+10 %

Die mit dem LCoH-Verfahren (levelised cost of heat) (Anhang L: IEA SHC Task 54 Info sheet Levelised Cost of Heat (LCoH)) bestimmten solaren, konventionellen und gesamten Wärmepreise sind in Tabelle 9 für die Referenzanlagen und die "standardisierten" Anlagen zusammengefasst. Alle in Tabelle 9 dargestellten Anlagen decken den Wärmebedarf (Warmwasser und Heizung) eines Einfamilienhaus mit 4 Personen am Standort Würzburg. Tabelle 9: Vergleich der Wärmepreise für die solar erzeugte Wärme (LCoH_{sol,fin}), die konventionell erzeugte Wärme (LCoH_{conv,fin}) und der durch die gesamte Anlage erzeugte Wärme (LCoH_{ov,fin}) für die Referenzanlagen und die "standardisierten" Anlagen

	LCoH _{sol,fin} [€ct/kWh]	LCoH _{conv,fin} [€ct/kWh]	LCoH _{ov,fin} [€ct/kWh]
Konventionelle Referenzanlage	-	11.3	11.3
Referenz-Solaranlage zur Trinkwassererwärmung	11.3	12.1	12.0
"standardisierte" Solaranlage zur Trinkwassererwärmung	8.2	12.6	11.5
Referenz Kombianlage	17.8	12.3	13.7
"standardisierte" Kombianlage	12.6	12.6	12.6

Der solare Wärmepreis für die Solaranlage zur Trinkwassererwärmung (LCoH_{sol,fin}) erniedrigt sich im vorliegenden Fall um ca. 30 % von 11.3 Ct/kWh auf 8.2 Ct/kWh. Die Wärmepreise der Gesamtanlage liegen mit 11.5 Ct/kWh in der gleichen Größenordnung (11.3 Ct/kWh) wie die der konventionellen Referenzanlage.

Auch bei der Kombianlage reduziert sich der solare Wärmepreis um fast 30 % von 17.8 €t/kWh auf 12.6 €t/kWh. Hier liegt jedoch der Gesamtwärmepreis in Höhe von 12.6 €t/kWh noch etwas über dem der konventionellen Referenzanlage (11.3 €t/kWh).

Fazit:

Eine konsequente Standardisierung der Komponenten und Schnittstellen gepaart mit einer Massenfertigung kann zur einer Reduktion des solaren Wärmepreises von ca. 30 % führen und kann somit die Wettbewerbsfähigkeit der Solarthermie gegenüber anderen Wärmeerzeugertechnologien weiter deutlich steigern. Werden die aufgezeigten Potentiale ausgenutzt und die thermische Leistungsfähigkeit insbesondere durch die Verringerung der Speicherwärmeverluste durch eine bessere Effizienzklasse (B oder A statt C für den Speicher der Solaranlage für die Trinkwassererwärmung, C oder B statt D für den Speicher der Kombianlage) sowie den konsequenten Einsatz von Mikrozirkulationsbremsen weiter reduziert, können auch im Einfamilienhausbereich Gesamtwärmepreise mit Solaranlagen erzielt werden die unter denen von konventionellen Anlagen zur Wärmeerzeugung liegen.

Ausblick:

Das Vorhaben hat gezeigt, dass durch die konsequente Standardisierung der Komponenten, hydraulischen und mechanischen Schnittstellen eine signifikante Reduktion des solaren Wärmepreises möglich ist. Diese wird in erster Linie durch eine vereinfachte und fehlerfreie Installation und der damit einhergehenden Reduktion der Installations- und Wartungskosten sowie der erhöhten thermischen Leistungsfähigkeit der Solaranlage erzielt. Eine weitere Reduktion der Fertigungskosten der Komponenten ist momentan nicht zu erwarten solange die Stückzahlen nicht wieder signifikant steigen. Weitere Kosteneinsparungen sind jedoch zu erwarten, wenn die Installation von Solarthermieanlagen weiter vereinfacht wird. Folgende Maßnahmen würden dies unterstützen:

• Entwicklung eines Schnellmontagerohrsystems das ein "plug and flow" vom Kollektor bis zum Speicher ermöglicht

- Eine Marktrecherche zu den auf dem Markt verfügbaren Schnellmontagerohren sowie die Entwicklung zur Klassifizierung von Schnellmontagerohren im Hinblick auf die thermische Leistungsfähigkeit sowie die Gebrauchstauglichkeit
- Entwicklung und Einsatz kabelloser Temperaturfühler zur Verringerung/Vermeidung des Aufwands zur Installation der für die Regelung benötigten Temperaturfühler
- Standardisierung Reglerkommunikation
- Eine Marktrecherche zu verfügbaren Frostschutzmittel (Glykolen) sowie die Prüfung der Mischbarkeit und die Erarbeitung von Anforderungen zur Gebrauchsdauer sowie die Entwicklung geeigneter Prüfverfahren zur Überprüfung der Anforderungen

Zur Verifizierung der erzielten Ergebnisse wären zudem der Bau und die Erprobung (Prüfung) der entwickelten Standards notwendig. Dies sollten zum einen auf Komponentenbasis erfolgen und zum anderen durch den Vergleich der Montage und thermischen Leistungsfähigkeit der "standardisierten" Anlage und der "nicht standardisierten Anlage.

Als weiteres sind die im Folgenden aufgeführten unterstützende Maßnahmen zu sehen:

- Entwicklung eines "up und downscaling" Verfahren für Wärmespeicher > 600 l zur Reduktion der Prüfkosten für die Speicherhersteller
- Entwicklung einer Solarapp zur Ertrags- und Preisberechnung (SEPB)
 - Ertragsberechnung
 - Fördergeldberechnung
 - Berechnung solare Wärmepreise
 - Ecolabeling
 - weitere digitale Dienste
- Die Entwicklung einer standardisierten Vorgehensweise zur Wirtschaftlichkeitsrechnung von Wärmeerzeugern
- Miteinbeziehung des ökologischen Fußabdrucks in die Bewertung von Energieerzeugern
- Mitarbeit Deutschlands an der IEA SHC Task zur LCA und LCoH
- Mitarbeit in den entsprechenden Normungsgremien sowie in einer zu definierenden IEA SHC Task 57 follow up Aktivität.

10 Danksagung

Das Forschungsprojekt "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen", Akronym "KoST", wurde aufgrund eines Beschlusses des deutschen Bundestages vom Bundesministerium für Wirtschaft und Energie (BMWi) über den Projektträger Jülich (PtJ) unter dem Förderkennzeichen 0325860A gefördert sowie von den beteiligten Industriepartnern mitfinanziert. Die Autoren danken für die Unterstützung und übernehmen die Verantwortung für den Inhalt dieses Beitrags.

11 Literaturverzeichnis

- [1] http://www.bundesregierung.de/Webs/Breg/DE/Themen/Energiewende/ EnergieErzeugen/ErneuerbareEnergien-Zeitalter/_node.html#doc516106bodyText1
- [2] http://www.umweltbundesamt.de/daten/energiebereitstellung-verbrauch/anteilerneuerbarer-energien-am-energieverbrauch
- Kremer, Z., Drück, H., Sommer, K. et.al., Fahrplan Solarwärme, Strategie und Maßnahmen der Solarwärme-Branche für ein beschleunigtes Marktwachstum bis 2030.
 BSW – Bundesverband Solarwirtschaft e.V., Berlin (Hrsg.), 2012
 http://www.solarwirtschaft.de/fileadmin/media/pdf/fahrplan_langfassung.pdf
- [4] Geimer, K. and K. Kramer (2013). Projektabschlussbericht "MechTest" -Charakterisierung der mechanischen Lastfälle durch Schnee- und Windlasten an solarthermischen Kollektoren mit ihren Befestigungs- und Montagesystemen. Freiburg, Fraunhofer Institut für Solare Energiesysteme ISE
- [5] Geimer, K. KOST ABSCHLUSSBERICHT Kostenoptimierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen (Teilprojekt MCSt1), Oktober 2019
- [6] Jürgen Böhringer (Helvetic Energy GmbH), Urs Wolfer, Wieland Hintz (BFE), Kontrollen von solarthermischen Anlagen Schlussbericht, energie schweiz, 23. September 2016,

Anhang A: Standardisierung in der Solarthermie

STANDARDISIERUNG IN DER SOLARTHERMIE

Chancen und Potenziale

Dipl.-Ing. Robert Hämmerl Martin Mikolajewski, B.Sc.

Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart.

Projekt: KoST "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen"

Stuttgart, 15.08.2019

Inhalt

1	Einführung	3
2	Kostensenkung durch Standardisierung	4
3	Innovationsförderung und Rechtssicherheit	5
4	Vorteile für den Verbraucher und die Gesellschaft	6
5	Aktive Beteiligung am Standardisierungsprozess als Erfolgsfaktor	6
6	Herausforderungen der Standardisierung	6
7	Gegenüberstellung der Chancen und Herausforderungen	7
8	Standardisierung als wichtiger Faktor in der Solarthermie- Branche	7
9	Literaturverzeichnis	9

Fraunhofer IAO

Standardisierung in der Solarthermie

1 Einführung

Standardisierung bezeichnet im Allgemeinen die Reduktion von Vielfalt [1] beziehungsweise den Prozess der Vereinheitlichung [2], dessen Ziel die Senkung der Komplexität ist. Bezogen auf die Erzeugung technischer und industrieller Produkte wird die Standardisierung als Teilbereich der Produktgestaltung verstanden, welche die Vereinheitlichung von Größen, Abmessungen, Formen und anderen Ausprägungen von Einzelteilen bzw. von kompletten Produktvarianten beinhaltet [3].

Die im allgemeinen Sprachgebrauch oft synonym verwendeten Begriffe Standardisierung und Normung sind insbesondere im technischen Kontext eng miteinander verknüpft [4, 5]. Das Deutsche Institut für Normung (DIN) differenziert hierbei zwischen einer DIN-Norm und einer DIN SPEC. Die Inhalte einer Norm werden unter breiter Beteiligung aller Interessensgruppen im Konsens erarbeitet und nach Einsicht durch die Öffentlichkeit ggfs. überarbeitet. Beim Standard DIN SPEC erfolgt eine Vereinfachung dieser Prozedur, bei welcher keine Konsenspflicht besteht, nicht alle Interessensgruppen beteiligt sein müssen und die Veröffentlichung des Entwurfs nicht vorgeschrieben ist. So lassen sich innovative Lösungen schnell und unkompliziert am Markt etablieren und verbreiten. Zudem kann eine DIN SPEC die Basis für die Erarbeitung einer Norm sein. [6]

Normen und Standards unterscheiden sich in ihrem Entstehungsprozess und ihrer Ausprägung. So wird ein Standard nicht notwendigerweise durch eine anerkannte Institution erschaffen und muss keine spezifische äußere Form aufweisen. Während der Begriff Standard vor allem eine hohe Verbreitung am relevanten Markt impliziert, definiert sich eine Norm insbesondere über ihre Herkunft und Entstehung. Sowohl Standards als auch Normen treffen allerdings gleichermaßen vereinheitlichende, technische Festlegungen und verfolgen die gleichen Ziele. [5]

Normung und Standardisierung sind eine gemeinnützige Gemeinschaftsaufgabe von Wirtschaft, Technik, Wissenschaft, Staat und Gesellschaft und dienen dem Nutzen aller Beteiligten. Dementsprechend bieten die resultierenden Normen und Standards zahlreiche volkswirtschaftliche, betriebswirtschaftliche und gesellschaftliche Vorteile. [7, 8]

Der wirtschaftliche Einfluss spiegelt sich im geschätzten Anteil von 0,7 bis 0,8 % der Normung am deutschen Bruttoinlandsprodukt und dem durchschnittlichen gesamtwirtschaftlichen Nutzen von 16,77 Mrd. Euro im Zeitraum 2002 – 2006 wider [9].

Fraunhofer IAO

2 Kostensenkung durch Standardisierung

Zu den ökonomischen Vorteilen zählen insbesondere Kostensenkungspotenziale. Durch die Anwendung standardisierter Verfahren und die Herstellung standardisierter Produkte wird ein Rationalisierungseffekt erreicht. So können durch Skalen- und Lernkurveneffekte die Stückkosten gesenkt werden (s. Abbildung 1). [8, 10]

Abbildung 1: Typischer Lernkuvenverlauf (nach [10])

Wie Abbildung 2 zeigt, verursacht eine zunehmende Variantenvielfalt in der Regel überproportional hohe Kosten [11]. Eine Mengenverteilung der Produkte zugunsten von Standards kann hingegen einen wirtschaftlichen Nutzen und folglich höhere Gewinne generieren.

Abbildung 2: Entstehung von Variantenkosten (nach [12])

Fraunhofer IAO

Standardisierung in der Solarthermie

Beispielsweise werden bei der Verwendung standardisierter Gleichteile der Lagerbestand und damit auch die Lagerkosten verringert, da bei einer niedrigeren Variantenzahl weniger Sicherheitsbestände nötig sind. Zudem müssen weniger Bauteile entwickelt und getestet werden, wodurch in fast allen Funktionsbereichen Kosten eingespart werden. [13]

Der Anteil der Variantenkosten an den gesamten Herstellkosten (inkl. Entwicklungs- und Konstruktionskosten) wird von Caesar, wie in Abbildung 3 zu sehen, mit 15-20 % angegeben [14]. Durch Standardisierungsmaßnahmen und Variantenreduzierung können hier erhebliche Einsparungen erzielt werden.

Abbildung 3: Beeinflussbares Potenzial für die Herstellkosten 2 durch Variantenreduzierung (nach [14])

Ein weiterer Aspekt ist die Reduktion von Transaktionskosten, welche sich beispielsweise aus einer vereinfachten Abstimmung und Kommunikation mit potenziellen oder bestehenden Lieferanten ergibt. Dadurch wird die Zusammenarbeit der Beteiligten gefördert. Im Allgemeinen profitieren alle Beteiligten durch mehr Klarheit und Übersichtlichkeit, da einheitliche Kriterien und Spezifikationen umgesetzt werden und gleichzeitig die Entwicklung von "Parallelwelten" verhindert wird. [8, 15]

3 Innovationsförderung und Rechtssicherheit

Des Weiteren stützen und forcieren Standards und Normen die technische Entwicklung von Innovationen, indem sie fachliches Know-how auf breiter Basis bekannt und nutzbar machen. Als Ergebnis dessen werden sowohl bestehende internationale Absatzmärkte erweitert, als auch neue Märkte geschaffen. Dies erleichtert den Export und die Beseitigung von Handelshemmnissen und stärkt somit den internationalen Handel. [7, 8, 16]

Dass Standards und Normen im Kontext der Innovation eine hohe Bedeutung haben, verdeutlicht beispielsweise das im Jahr 2006 gestartete Projekt "Innovation mit Normen und Standards" (INS). Hierbei förderte das BMWi bis 2016 mit großem Erfolg jährlich über 30 innovative Forschungsprojekte. Das Ziel war insbesondere, Normungs- und Standardisierungsaktivitäten früh im Forschungs- und Entwicklungsprozess zu etablieren und somit optimale Rahmenbedingungen für Innovationen zu schaffen und ihre Marktfähigkeit aktiv zu unterstützen. Neben der Optimierung des Marktreifeprozesses neuer Technologien erfolgte eine effizientere Einbindung bisher normungsferner Kreise, sowie die Sensibilisierung der Verantwortlichen in Wirtschaft, Wissenschaft und Politik. Mit WIPANO (Wissens- und Technologietransfer durch Patente und Normen) wurde 2016 darauf aufbauend eine neue Fördermaßnahme eingeführt. Hier werden die Nor-

Fraunhofer IAO

Standardisierung in der Solarthermie

mungsförderung der bisherigen Programme INS und TNS ("Transfer von FuE-Ergebnissen durch Normung und Standardisierung") mit der Patentförderung des bisherigen SIGNO-Programms ("Schutz vor Ideen für die gewerbliche Nutzung") unter dem Dach "Technologietransfer" zusammengefasst. [17, 18]

Ein weiterer Anreiz zur Anwendung von Standards liegt in der dadurch gewonnenen Rechtssicherheit. Arbeitet und produziert ein Unternehmen nach den Regeln der Technik, welche von einer Vielzahl repräsentativer Fachleute anerkannt sind, erhöht dies im Schadensfall die rechtliche Absicherung. Am wirkungsvollsten sind hierbei Normen, wobei auch diese im Einzelfall auf Vollständigkeit, Aktualität und Sachgerechtigkeit überprüft werden. Die Erfahrung zeigt aber, dass die nachgewiesene Anwendung von DIN-Normen regelmäßig zur Beweislastumkehr führt, sodass der Hersteller nicht mehr seine Schuldlosigkeit beweisen, sondern dass der Kläger dem Hersteller die Schuld nachweisen muss. [8]

4 Vorteile für den Verbraucher und die Gesellschaft

Neben den Herstellern und Anbietern profitieren auch die Anwender, Verbraucher und die Gesellschaft von Standardisierung. Normen und Standards leisten einen Beitrag zum Umwelt-, Arbeits- und Gesundheitsschutz. Sie gewährleisten dem Kunden ein Mindestmaß an Sicherheit, Qualität, Zuverlässigkeit und Gebrauchstauglichkeit der angebotenen Produkte. Zudem wird die Kompatibilität von verschiedenen Produkten, Komponenten, Anschlüssen und Dienstleistungen sichergestellt. [15, 16]

So kann der Anwender herstellerübergreifend Produkte oder Bauteile kombinieren. Darüber hinaus wird dem Kunden durch einheitliche Standards der Vergleich und die Wahl innerhalb der angebotenen Produkte erleichtert. [8, 15]

Aus diesen Gründen werden Normen und Standards in der Gesellschaft generell positiv wahrgenommen. Sie sind allgemein anerkannt und schaffen beim Käufer Vertrauen. [19]

Dies erhöht die Kauf- und Zahlungsbereitschaft des Kunden und ist durch die resultierende Umsatzsteigerung ein weiterer Grund für Unternehmen auf Standardisierung zu setzen [8, 15].

5 Aktive Beteiligung am Standardisierungsprozess als Erfolgsfaktor

Um als Unternehmen die Vorteile von Standards und Normen umfassend zu nutzen, ist die aktive Teilnahme am Normungs- bzw. Standardisierungsprozess und die aktive Anwendung der Normen bzw. Standards wichtig. Ersteres ermöglicht es, die eigenen Interessen einfließen zu lassen. Dazu zählen die Interessen des Unternehmens, von Unternehmensgruppen, aber auch nationale Interessen. Des Weiteren ergibt sich ein Wissens- und Zeitvorsprung, da das Wissen den Beteiligten bereits vor der Veröffentlichung der Ergebnisse des Standardisierungsprozesses zur Verfügung steht. Als weiterer Vorteil kommt die Vernetzung der beteiligten Akteure hinzu. Prinzipiell gilt, dass das eigene Agieren dem Reagieren vorzuziehen ist, da so nachträgliche Umstellungskosten vermieden bzw. verringert werden können. Zudem können Forschungs- und Entwicklungskosten gesenkt werden, da Erkenntnisse, Wissen und Informationen durch alle Beteiligten erarbeitet, ausgetauscht und bereitgestellt werden. [8, 16]

6 Herausforderungen der Standardisierung

Neben den zahlreichen Vorzügen kann Standardisierung aber auch große Herausforderungen mit sich bringen. Beispielsweise verlangt eine durch Standardisierungsmaßnahmen hervorgerufene Gleichteileverwendung, dass Bauteile und Komponenten so ausgelegt werden, dass diese mit mehreren Produkten kompatibel sind. Hieraus folgt ein erhöhter Koordinationsaufwand. Zudem ergeben sich Interdependenzen der einzelnen Produkte und Bauteile, welche bei Produktänderungen Beachtung finden müssen. [13]

In der Einführungsphase von Standards müssen zudem bestehende Konstruktionen angepasst und Strukturen und Prozesse umgestellt werden, sodass hier zunächst ein gewisser Aufwand und erhöhte Kosten zu erwarten sind.

Fraunhofer IAO

Standardisierung in der Solarthermie

Zu den größten Hemmnissen zählt insbesondere die mit steigernder Standardisierung einhergehende Verringerung der Anzahl der Alleinstellungsmerkmale einzelner Hersteller, sodass die Differenzierung gegenüber der Konkurrenz erschwert wird.

Außerdem wird die Herstellung kundenindividueller Produkte zur größeren Herausforderung. Dieses Problem lässt sich allerdings gut handhaben, indem man Gleichteile beispielsweise nur dort einsetzt, wo sie für den Kunden nicht direkt sichtbar sind [13]. Zudem können durch Modulbauweisen, Baukasten- und Plattformsysteme dennoch variantenreiche und individuelle Produkte hergestellt werden, sodass Standardisierung und Kundenindividualität sich nicht gänzlich ausschließen müssen [20].

7 Gegenüberstellung der Chancen und Herausforderungen

Wie dargestellt wurde, können Standardisierungsmaßnahmen Herausforderungen mit sich bringen. In der Regel überwiegen allerdings die Vorteile und Potenziale. Als Beispiel dienen die von der International Organization for Standardization (ISO) und ihrer Mitglieder seit 2010 durchgeführten Fallstudien. 25 Unternehmen unterschiedlichster Größe aus über 20 Ländern und verschiedenen Branchen wurden nach der "ISO-Methodologie" untersucht. Bei allen Unternehmen generierte die Umsetzung von Standardisierungsmaßnahmen einen wirtschaftlichen Nutzen. Dieser lag, sofern angegeben, im Bereich von 0,12 bis 33 % des jeweiligen Umsatzerlöses. [21]

Die Ergebnisse zeigen, dass die aus der Standardisierung resultierenden Vorteile von zahlreichen Faktoren abhängen und damit schwer allgemein quantifizierbar sind. Gleichzeitig wird aber ersichtlich, dass Standardisierung in unterschiedlichsten Branchen und bei Unternehmensgrößen, insbesondere im produzierenden Bereich, Nutzenpotenziale bietet. Daher sollte es als eine Unternehmenspflicht gesehen werden, sich über Normung und Standardisierung zu informieren und mit den resultierenden Auswirkungen und Veränderungen auseinanderzusetzen. Ob und welche Maßnahmen umzusetzen sind, muss anschließend unter Beachtung der jeweiligen Gegebenheiten situativ entschieden werden. [16]

8 Standardisierung als wichtiger Faktor in der Solarthermie-Branche

Durch Standardisierung können auch im Bereich der Solarthermie-Branche entsprechende Vorteile genutzt und Verbesserungen generiert werden.

Die "Forschungsagenda Solarthermie" der Publikationsreihe Blue Globe Report spricht die wichtige Rolle von Standards an. Sie verringern Eintrittsbarrieren für neue Technologien in den Markt und begünstigen die Erreichung einer hohen Akzeptanz am Markt. Damit bilden sie eine Voraussetzung für die Sicherung eines nachhaltigen Marktwachstums. [22]

Auch im vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit geförderten "Fahrplan Solarwärme" wurden Standardisierung und Zertifizierung als wichtige Treiber für die weitere Entwicklung der Solarthermie hinsichtlich der Wettbewerbsfähigkeit identifiziert. Große Potenziale werden bei Technologiesprüngen in den Bereichen Kollektor und Wärmespeicher gesehen. Hier können Standards als Innovationsförderer einen Beitrag leisten. Zudem kann Standardisierung in Kombination mit vergrößerter Anzahl pro Jahr verkaufter Anlagen die Planungskosten verringern. Weitere Erfolgsfaktoren sind die optimale Abstimmung aller Komponenten sowie die Vereinfachung der Montage und Installation durch vorkonfigurierte und standardisierte Baugruppen und standardisierte Montagetechniken. [23]

Neben den bereits oben genannten Chancen der Kostensenkung ergeben sich insbesondere hier ein großes Einsparungs- und Verbesserungspotenzial. So verlangt ein standardisiertes und hinsichtlich der Montage optimiertes System weniger herstellerspezifisches Fachwissen und verringert die Anzahl an benötigtem Werkzeug. Als Folge dessen können Installationsfehler vermieden, die Anschaffungskosten für unterschiedliches Werkzeug gesenkt und der Aufwand für die Arbeitsvorbereitung verringert werden. Dies führt insgesamt zu einer schnelleren, einfacheren und kostengünstigeren Montage. Zu beachten ist, dass die Installation der Solarkollektoren und deren Halterungen und Anschlüsse auf dem Dach, auch auf Schrägdächern, erfolgt. Dies resultiert in erschwerten Montagebedingungen und begrenzt beispielsweise die Mitnahme von Werkzeug zum eigentlichen Montageort. Insbesondere in diesen Fällen kann die Standardisierung zu einer Verbesserung der Montagebedingungen.

Standardisierung in der Solarthermie

Hinsichtlich des aktuellen Standes der Standardisierung von Solarthermieanlagen und des zukünftigen Handlungsbedarfs bietet die "Deutsche Normungsroadmap Energiespeicher" des DIN eine gute Übersicht. Die Roadmap listet unter anderem die bestehenden Normen und Standards, als auch die entsprechenden Gremien auf. Dabei wird bei den thermischen Energiespeichertechnologien neben dem Speicher selbst auch das System betrachtet, in dem er sich befindet. Damit thematisiert das Dokument alle Komponenten einer solarthermischen Anlage. Es wird zwischen industriellen Anwendungen (Verknüpfung mit industriellen Prozessen) und Gebäudeenergiesystemen (Heizungs- und Trinkwasseranwendungen) unterschieden. Im industriellen Anwendungsgebiet sind vorwiegend nationale Standards vorhanden. Dabei bestehen vereinzelt Lücken im Bereich der Sicherheitsanforderungen, der Bewertungsmethoden und im Bereich reiner Produktnormen. Für Gebäudeenergiesysteme hingehen existiert bereits eine große Anzahl an technischen Regelwerken, welche von verschiedenen nationalen, europäischen und internationalen Gremien erarbeitet worden sind und unterschiedliche Aspekte betrachten. Dennoch gibt es auch hier in einigen Bereichen Bedarf an weiteren Standards. In beiden Anwendungsfällen wird insbesondere eine verstärkte Koordination und Kommunikation zwischen den jeweiligen Gremien empfohlen, um einerseits Lücken zu schließen und andererseits Doppelarbeiten zu vermeiden. Insbesondere in Fall von regenerativen Energiequellen ist die Erarbeitung von Normen und Standards unabdingbar, um eine konstante, kosteneffiziente und flächendeckende Versorgung von Wärmeenergie für die Gebäudetechnik zu gewährleisten. [24]

Fraunhofer IAO

Standardisierung in der Solarthermie

9 Literaturverzeichnis

- KNORR, Henning: Ökonomische Probleme von Kompatibilitätsstandards : Eine Effizienzanalyse unter besonderer Berücksichtigung des Telekommunikationsbereichs. Baden-Baden : Nomos-Verlag, 1993 (Law and economics of international telecommunications vol. 18)
- [2] ARLT, Eberhard; ARLT, Eberhard (Mitarb.): Rationalisierung durch Standardisierung. Berlin : Verl. Technik, 1968
- [3] GABLER WIRTSCHAFTSLEXIKON: Produktstandardisierung. URL https://wirtschaftslexikon.gabler.de/definition/produktstandardisierung-44535/version-267843.
 Aktualisierungsdatum: 2018-02-19 – Überprüfungsdatum 2019-04-16
- [4] GEBHART, Nicolas ; KRUSE, Moritz ; KRAUSE, Dieter: Gleichteile-, Modul- und Plattformstrategie. In: LINDEMANN, Udo (Hrsg.): Handbuch Produktentwicklung. München : Hanser, 2016, S. 111–149
- [5] APPL, Clemens: Technische Standardisierung und Geistiges Eigentum. Wien : Springer, 2012
- [6] DIN E. V.: Über Normen & Standards : DIN kurz erklärt. URL https://www.din.de/de/uebernormen-und-standards/basiswissen – Überprüfungsdatum 2019-05-17
- [7] GAUB, Heinz: Strategische Normung (Vorlesung TU Berlin). April 2010
- [8] GAUB, Heinz; SCHACHT, Mario: Normung und Normen im Produktentstehungsprozess. In: FELDHAU-SEN, Jörg; GROTE, Karl-Heinrich (Hrsg.): Pahl/Beitz Konstruktionslehre : Methoden und Anwendung erfolgreicher Produktentwicklung. 8., vollständig überarbeitete Auflage. Berlin, Heidelberg : Springer Vieweg, 2013, S. 152–199
- [9] BLIND, Knut ; JUNGMITTAG, Andre ; MANGELSDORF, Axel: Der gesamtwirtschaftliche Nutzen der Normung : Eine Aktualisierung der DIN-Studie aus dem Jahr 2000. 1. Aufl. Berlin, 2011
- [10] FELDHAUSEN, JÖrg ; GROTE, Karl-Heinrich ; THON, JÖrg: Grundsätzliche Überlegungen zur Rationalisierung. In: FELDHAUSEN, JÖrg; GROTE, Karl-Heinrich (Hrsg.): Pahl/Beitz Konstruktionslehre : Methoden und Anwendung erfolgreicher Produktentwicklung. 8., vollständig überarbeitete Auflage. Berlin, Heidelberg : Springer Vieweg, 2013, S. 773–815
- [11] GROBE-HEITMEYER, Volker ; WIENDAHL, Hans-Peter: Einführung. In: WIENDAHL, Hans-Peter (Hrsg.): Variantenbeherrschung in der Montage : Konzept und Praxis der flexiblen Produktionsendstufe. Berlin : Springer, 2004 (Engineering online library), S. 3–17
- [12] SCHUH, Günther ; SPETH, Christoph: Integriertes Komplexitätsmanagement. In: Effektive Entwicklung und Auftragsabwicklung variantenreicher Produkte : Allgemeiner Maschinenbau, Anlagenbau, Fahrzeugtechnik ; Tagung Würzburg, 7. und 8. Oktober 1998 (VDI-Berichte, 1434). Düsseldorf, 1998, S. 157–174
- [13] THONEMANN, Ulrich: Operations Management : Konzepte, Methoden und Anwendungen. 3., aktualisierte Auflage. Hallbergmoos : Pearson, 2015 (Pearson Studium - Economic BWL)
- [14] CAESAR, Christoph: Kostenorientierte Gestaltungsmethodik für variantenreiche Serienprodukte : Variant mode and effects analysis (VMEA). Zugl.: Aachen, Techn. Hochschule, Diss. Als Ms. gedr. Düsseldorf : VDI-Verl., 1991 (Fortschritt-Berichte / VDI @Reihe 2, Fertigungstechnik 218)

Fraunhofer IAO

Standardisierung in der Solarthermie

- [15] CEN: Standards and your business : How your business can benefit from standards and participate in standardization activities. 2013
- [16] HARTLIEB, Bernd ; HÖVEL, Albert ; MÜLLER, Norbert: Normung und Standardisierung : Grundlagen.
 2., aktualisierte Auflage. Berlin : Beuth Verlag GmbH, 2016 (Beuth Praxis)
- [17] DIN E. V. (Hrsg.): Innovation mit Normen und Standards : Ergebnisbericht 2015. Berlin, 2015
- [18] DIN E. V.: Forschung & Innovation : Förderprogramme. URL https://www.din.de/de/forschungund-innovation/foerdervorhaben. – Aktualisierungsdatum: 2019-05-17
- [19] DIN E. V.: Deutsche Normungsstrategie : Mit Normung Zukunft gestalten! 2017
- [20] KAUF, Florian: Kostenmanagement. In: FELDHAUSEN, Jörg; GROTE, Karl-Heinrich (Hrsg.): Pahl/Beitz Konstruktionslehre : Methoden und Anwendung erfolgreicher Produktentwicklung. 8., vollständig überarbeitete Auflage. Berlin, Heidelberg : Springer Vieweg, 2013, S. 124–152
- [21] ISO: Economic benefits of standards. Genf, 2014
- [22] WEISS, Werner ; BRUNNER, Christoph ; BUCHINGER, Rober ; FINK, Christian ; W. LANG, Reinhold ; MONSBERGER, Michael ; PODESSER, Erich ; STEINMAURER, Gerald ; STREICHER, Wolfgang ; THÜR, Alexander ; WALLNER, Gernot: Forschungsagenda Solarthermie. Wien, 2010 (Blue Globe Report Erneuerbare Energien #12)
- [23] BUNDESVERBAND SOLARWIRTSCHAFT E. V.: Fahrplan Solarwärme : Strategie und Maßnahmen der Solarwärme-Branche für ein beschleunigtes Marktwachstum bis 2030. Berlin, 2012
- [24] DIN E. V. (Hrsg.); DKE (Hrsg.); DVGW E. V. (Hrsg.); VDI E. V. (Hrsg.): Deutsche Normungsroadmap Energiespeicher. 2016

Fraunhofer IAO

Standardisierung in der Solarthermie

Anhang B: Ausschreibung Anschlussset Sonnenkollektoren (Bsp. Flexxibl)

Universität Stuttgart

Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung • 70550 • Stuttgart

Flexxibl GmbH Gunther Hesse Trautenaustraße 8 38114 Braunschweig

Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung

Ansprechpartner/in Stephan Fischer Kontakt Pfaffenwaldring 6 70569 Stuttgart T 0711 685-63503 F-Mail: stephan.fischer@igte.unistuttgart.de www.igte.uni-stuttgart.de

Aktenzeichen

08.11.2019

Preisanfrage Anschlussset Sonnenkollektoren

Sehr geehrte Damen und Herren,

im Rahmen des vom BMWi geförderten Projekts KoST "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen" wurde folgender Vorschlag für ein standardisiertes Anschlussset für Sonnenkollektoren entwickelt:

Anschlussset für 2 Sonnenkollektoren passend für folgende Zeichnung

und bestehend aus:

- 1 x 1 m Schlauch (blankes Rohr mit Sechskant für Klemmringanschluss) + Eckstück + O-Ring Stutzen + Isolierung + Klammer
- 1 x 1 m Schlauch (blankes Rohr mit Sechskant f
 ür Klemmringanschluss) + Eckst
 ück mit F
 ühler-Aufnahme + Zugentlastung + O-Ring Stutzen + Isolierung + Klammer
- 2 x Kompensator mit beidseitig O-Ring Stutzen + Isolierung + Klammern
- 2 x Stopfen mit O-Ringen + Klammern

Zertifikat seit zons audit familiengerechte hochschule

Seite 1 von 2

Bank Baden-Württembergische Bank Stuttgart – BW-Bank

IBAN DE51 6005 0101 7871 5216 87

SWIFT/BIC SOLADEST600

Umsatzsteuer-IdNr. DE 147794196

- Alle Teile sind mit Schutzkappe versehen
- 1 x Verpackung in Folie + Artikelaufkleber für das Set

Bitte unterbreiten Sie uns ein Angebot für den Bezug von jährlich 1000, 10000 und 100000 Sets unter folgenden Randbedingungen:

- 1. Günstigste Materialvariante
- 2. Max. Betriebsbedingungen: 10 bar, 200 °C
- 3. Ausführung mit 2 und 3 O-Ringen
- 4. Abstand Anschlüsse gemäß Zeichnung: 25 mm, 45 mm und 65 mm
- 5. Zulässiger axialer Versatz: < 10 mm
- 6. Zulässiger radialer Versatz: < 5 mm
- 7. Zulässiger Winkelfehler: < 2°

Bitte richten Sie Ihr Angebot an stephan.fischer@igte.uni-stuttgart.de

Bei Rückfragen stehe ich Ihnen gerne telefonisch (0711 685 63231) oder per Email zur Verfügung

Mit freundlichen Grüßen

Stephan Fischer Leiter Arbeitsgruppe Komponenten und Systemprüfung

Seite 2 von 2

in Kooperation mil

SW

Anhang C: Marktrecherche Speicher

itw

FORSCHUNGS- UND TESTZENTRUM FÜR SOLARANLAGEN Institut für Thermodynamik und Wärmetechnik Universität Stuttgart

Marktanalyse Speicher Bericht und Abschluss AP 4.1 im Projekt "KoST"

Stuttgart, den 21.03.2018

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages Bericht und Abschluss des Arbeitspakets AP 4.1 "Marktanalyse Speicher" im Rahmen des geförderten Verbundprojekts Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen "KoST"

Institut für Thermodynamik und Wärmetechnik (ITW) • Pfaffenwaldring 6 • 70550 Stuttgart Tel. 0049(0)711/685-63536 • Fax 0049(0)711/685-63503 • e-mail: tzs@itw.uni-stuttgart.de

TZS Stuttgart	Telefon (0711) 685-63536	Seite 2 von 24
Pfaffenwaldring 6	Telefax (0711) 685-63503	Marktanalyse Speicher
70550 Stuttgart	tzs@itw.uni-stuttgart.de	vom 21.03.2018

Inhaltsverzeichnis

s	Seite
1. Einleitung	
2. Trinkwasserspeicher	
2.1 Speicherabmessungen	
2.2 Wärmedämmung5	
2.3 Anschlüsse und Flansche6	
2.4 Temperaturfühler8	
2.5 Anode	
2.6 Prüfergebnisse	
3. Kombispeicher	
3.1 Speicherabmessungen9	
3.2 Wärmedämmung11	1
3.3 Wärmeübertrager13	3
3.4 Anschlüsse	3
3.5 Temperaturfühler	5
3.6 Anode	3
3.7 Prüfergebnisse	3
Anhang A: Übersicht Trinkwasserspeicher	3
Anhang B: Übersicht Kombispeicher	1

TZS Stuttgart	Telefon (0711) 685-63536	Seite 3 von 24
Pfaffenwaldring 6	Telefax (0711) 685-63503	Marktanalyse Speicher
70550 Stuttgart	tzs@itw.uni-stuttgart.de	vom 21.03.2018

1. Einleitung

Im Rahmen des Projekts "KoST" soll unter anderem ein Standard sowohl für einen bivalenten Trinkwasserspeicher sowie einen Kombispeicher erstellt werden. Hierzu wurde vorab eine Analyse der zur Zeit am Markt angebotenen Speicher durchgeführt, als Grundlage zur Erarbeitung von Standards im Hinblick auf folgende Merkmale:

- Nennvolumina
- Durchmesser und Höhe
- Ausführung der Wärmedämmung (Material und Installation)
- hydraulische Anschlüsse (Position, Dimension, Ausführung)
- Montage und Art der Temperaturfühler (Abmessungen, Typ, Positionierung, elektrischer Anschluss)
- Thermische Leistungsfähigkeit

Als Datengrundlage wurden im Internet verfügbare Herstellerangaben aus Produktkatalogen sowie Daten von am ITW/TZS geprüften Speichern verwendet. Die Ergebnisse sind in Tabellenform im Anhang zu finden.

2. Trinkwasserspeicher

Es wurden insgesamt 30 Trinkwasserspeicher von verschiedenen Herstellern bezüglich der in Kapitel 1 genannten Kriterien untersucht. Die Volumina der Speicher betragen zwischen 162 I und 952 I, wobei die meisten der untersuchten Speicher ein Volumen zwischen ca. 300 I und ca. 500 I haben (siehe Bild 1).

2.1 Speicherabmessungen

Bild 2 zeigt die Speicherdurchmesser (Behälterdurchmesser) in Abhängigkeit vom Speichervolumen. Da die meisten Speicher mit einer nicht abnehmbaren PU-Hartschaumdämmung versehen sind, geben die Hersteller dieses Maß oft nicht an. Deshalb sind hier nicht aller untersuchten Speicher dargestellt. Es ist ersichtlich, dass Speicher bis zu einem Volumen von ca. 300 I meist einen Behälterdurchmesser von 0,5 m aufweisen. Darüber steigt mit zunehmendem Volumen in der Regel auch der Behälterdurchmesser an.

Bild 3 zeigt die Speicherhöhe mit Wärmedämmung in Abhängigkeit vom Speichervolumen. Da die meisten Speicher mit einer nicht abnehmbaren PU-Hartschaumdämmung versehen sind, geben die Hersteller nur die Höhe des gesamten Speichers mit Wärmedämmung an. Wie zu erkennen ist, steigt die Speicherhöhe mit zunehmendem Speichervolumen an. Die Streuung ist hier allerdings größer als beim Speicherdurchmesser. Die Speicherhöhen sind somit uneinheitlicher als die Speicherdurchmesser.

Bild 1: Volumen der analysierten Trinkwasserspeicher

Bild 2: Speicherdurchmesser in Abhängigkeit vom Speichervolumen

Bild 3: Speicherhöhe in Abhängigkeit vom Speichervolumen

2.2 Wärmedämmung

Bild 4 zeigt die verwendeten Wärmedämmmaterialien. Die meisten Speicher bis zu einem Volumen von ca. 500 I sind mit einer PU-Hartschaum-Wärmedämmung (PU) ausgestattet, die nicht abnehmbar ist. Lediglich zwei der untersuchten Speicher sind mit einer Wärmedämmung aus extrudiertem Polystyrol (EPS) ausgestattet, die auch abnehmbar ist. Es handelt sich hierbei um Formteile, die durch Stecken verbunden werden. Drei der untersuchten Speicher sind mit einer Wärmedämmung aus Polyester-Faservlies (Vlies) ausgestattet, das abnehmbar ist. Die Mantelwärmedämmung wird hier mit Hilfe einer Hakenleiste verschlossen. Bei Speichervolumina deutlich größer als 500 l muss eine abnehmbare Wärmedämmung verwendet werden, da die Speicher sonst nicht mehr türgängig sind.

Bild 4: Wärmedämmmaterial der untersuchten Speicher

2.3 Anschlüsse und Flansche

Bild 5 zeigt die Dimension der Trinkwasseranschlüsse (Warm- und Kaltwasser) in Abhängigkeit vom Speichervolumen. Meist wird von den Herstellern ein ¾"- oder ein 1"-Anschluß verwendet. Es ist keine Abhängigkeit vom Speichervolumen zu erkennen. Mit Ausnahme von zwei Speichern sind bei allen anderen Speichern diese Anschlüsse mit einem Außengewinde versehen. Der Warmwasseranschluss ist immer seitlich herausgeführt.

Bis auf zwei Speicher haben auch alle Speicher einen Anschluss für die Zirkulationsleitung. Meist ist er in der Dimension ³/₄" mit Außengewinde ausgeführt. Bei zwei Speichern ist er in der Dimension 1" ausgeführt. Bei vier Speichern kommt ein Innengewinde zum Einsatz.

In Bild 6 und Bild 7 ist die Dimensionierung der Anschlüsse für den Kollektorkreis bzw. die Nachheizung dargestellt. Meist wird hier ein 1"-Anschluss verwendet. Es ist auch hier keine Abhängigkeit vom Speichervolumen ersichtlich. Mit Ausnahme von zwei Speichern sind diese Anschlüsse mit einem Außengewinde versehen.

Bild 5: Dimension der Trinkwasseranschlüsse in Abhängigkeit vom Speichervolumen

Bild 6: Dimension der Anschlüsse für den Kollektorkreis in Abhängigkeit vom Speichervolumen

Bild 7: Dimension der Anschlüsse für die Nachheizung in Abhängigkeit vom Speichervolumen

Nur ein Speicher wird standardmäßig mit Konvektionsbremsen für die Anschlüsse ausgestattet. Es handelt sich hierbei um Kunststoffteile, die in die Anschlüsse eingeschoben werden und die Strömung leicht umlenken.

2.4 Temperaturfühler

Die meisten Speicher (22) verfügen zur Installation der Temperaturfühler über eingeschweißte Tauchhülsen mit einem Durchmesser zwischen 12 mm und 19 mm. Bei zwei Speichern wird die Tauchhülse über ein Gewinde eingedichtet. Drei Speicher verwenden einen senkrechten Fühlerkanal, in dem die Höhe individuell gewählt werden kann. Bei 17 Speichern können max. 2 Temperaturfühler montiert werden, bei 5 Speichern können max. 3 Temperaturfühler montiert werden.

Vaillant!?

2.5 Anode

Alle emaillierten Speicher verfügen über eine Opferanode, die im Speicherdeckel senkrecht montiert ist. Viele Hersteller machen keine Angabe über die Anschlussgröße für die Anode. Ansonsten werden hier gleichermaßen 1" und 5/4"-Anschlüsse verwendet. Zwei der Speicher sind nicht emailliert, da sie das Trinkwasser in einem internen Wärmeübertrager im Durchlauf erhitzen. Diese Speicher benötigen keine Anode.

TZS Stuttgart	Telefon (0711) 685-63536	Seite 9 von 24
Pfaffenwaldring 6	Telefax (0711) 685-63503	Marktanalyse Speicher
70550 Stuttgart	tzs@itw.uni-stuttgart.de	vom 21.03.2018

2.6 Prüfergebnisse

Die meisten Speicher sind nicht vollständig hinsichtlich ihres thermischen Verhaltens geprüft (z. B. nach EN 12977-3:2012). Für alle Speicher bis zu einem Volumen von 2000 I ist aber in der EU die Angabe der Energieeffizienzklasse nach der Verordnung (EU) Nr. 812/2013, Anhang II vorgeschrieben. Bild 8 zeigt diese für die untersuchten Speicher. Die meisten Speicher erfüllen die Energieeffizienzklasse "C". Seit dem 26.09.2017 ist dies die Mindestanforderung, um die Speicher in der EU verkaufen zu können. Einer der untersuchten Speicher ist nicht mehr am Markt.

Bild 8: Energieeffizienzklassen der untersuchten Speicher

3. Kombispeicher

Es wurden insgesamt 37 Kombispeicher von verschiedenen Herstellern bezüglich der in Kapitel 1 genannten Kriterien untersucht. Die Volumina der Speicher betragen zwischen 500 I und 2010 I, wobei die meisten der untersuchten Speicher ein Volumen zwischen ca. 750 I und ca. 1000 I haben (siehe Bild 9).

3.1 Speicherabmessungen

Bild 10 zeigt die Speicherdurchmesser (Behälterdurchmesser) in Abhängigkeit vom Speichervolumen. Es ist eine gewisse Abhängigkeit des Behälterdurchmessers vom Speichervolumen erkennbar. Die meisten Speicherbehälter mit einem Volumen zwischen 700 I und 1000 I haben einen Durchmesser von 0,79 m.

Bild 9: Volumen der analysierten Kombispeicher

Bild 10: Speicherdurchmesser in Abhängigkeit vom Speichervolumen

Bild 11: Speicherhöhe in Abhängigkeit vom Speichervolumen

Bild 11 zeigt die Speicherhöhe mit Wärmedämmung in Abhängigkeit vom Speichervolumen. Wie zu erkennen ist, steigt die Speicherhöhe tendenziell mit zunehmendem Speichervolumen an. Die Streuung ist hier allerdings relativ groß.

3.2 Wärmedämmung

Bild 12 zeigt die verwendeten Wärmedämmmaterialien. Die meisten Speicher sind mit einer abnehmbaren Wärmedämmung aus Polyesterfaservlies (Vlies) ausgestattet. Lediglich der kleinste Speicher ist mit einer Wärmedämmung aus Polyethylen (PE) ausgestattet, die nicht abnehmbar ist. Teilweise werden auch Kombinationen aus verschiedenen Materialien verwendet, z. B. Polyesterfaservlies und Polyurethan-Hartschaum (PU) oder Polyesterfaservlies und extrudiertes Polystyrol (EPS). Ein Speicher ist mit einer Vakuum-Isolationspaneele (VIP) wärmegedämmt, die in eine Wärmedämmung aus EPS eingebettet ist. Ein Speicher ist mit Holzfasermatten wärmegedämmt, die mit Holzplatten verkleidet werden.

Wie Bild 13 zeigt, wird die Mantelwärmedämmung meist mit Hilfe einer Hakenleiste verschlossen. 2 Speicher werden mit Elementen aus EPS wärmegedämmt, die mit Nut und Feder ineinander greifen, und daher keine ("ohne") Verschlusselemente benötigen.

Bild 13: Verschluss der Mantelwärmedämmung

TZS Stuttgart	Telefon (0711) 685-63536	Seite 13 von 24
Pfaffenwaldring 6	Telefax (0711) 685-63503	Marktanalyse Speicher
70550 Stuttgart	tzs@itw.uni-stuttgart.de	vom 21.03.2018

3.3 Wärmeübertrager

Kombispeicher unterscheiden sich vor allem durch die Art der Trinkwasserbereitung und die Einbindung der von den Kollektoren gelieferten Wärme. Daneben gibt es neben den druckbeaufschlagten Speichern auch drucklose Speicher. Entsprechend unterschiedlich sind die verwendeten Wärmeübertrager. Für die Trinkwassererwärmung wird am häufigsten das Edelstahl-Wellrohr eingesetzt (21 Speicher). Jeweils 8 Speicher verwenden einen internen Trinkwassertank (Tank-in-Tank-Speicher) oder einen externen Wärmeübertrager (Frischwasserstation).

Zur Einbindung der von den Kollektoren gelieferten Wärme wird am häufigsten ein interner Wärmeübertrager in Form eines Glattrohr-Wärmeübertragers aus Stahl eingesetzt (26 Speicher). 7 Speicher verwenden ein Edelstahl-Wellrohr, 2 Speicher ein Kupfer-Rippenrohr. Weitere 2 Speicher verwenden keinen Wärmeübertrager, da sie speziell für ein Drain-back-System oder für ein System, das Wasser als Wärmeträgermedium im Kollektorkreis verwendet konzipiert sind.

Vier Speicher sind drucklose Speicher und benötigen deshalb für die Anbindung der Raumheizung und der Nachheizung zusätzliche Wärmeübertrager. Hierzu wurden ausschließlich Edelstahl-Wellrohre verwendet.

3.4 Anschlüsse

Bild 14 zeigt die Dimension der Trinkwasseranschlüsse (Warm- und Kaltwasser) in Abhängigkeit vom Speichervolumen. Am häufigsten wird ein 5/4"-Anschluß verwendet. Es ist keine Abhängigkeit vom Speichervolumen zu erkennen. Außen- und Innengewinde werden dabei etwa gleich häufig verwendet.

Nur Speicher die das Trinkwasser mit externen Frischwasserstationen erwärmen und Tank-in-Tank-Speicher haben auch einen separaten Anschluss für eine Zirkulationsleitung. Bei den Speichern mit Frischwasserstation handelt es sich um einen zusätzlichen Anschluss (1" AG) für den Rücklauf etwa auf halber Speicherhöhe für den warmen Zirkulationsrücklauf. Bei den Tank-in-Tank-Speichern ist er in der Dimension ¾" mit Außengewinde ausgeführt. Bei Speichern mit einem Edelstahl-Wellrohr-Wärmeübertrager für die Trinkwassererwärmung wird optional ein Wellrohr mit kleinerem Durchmesser in den Warmwasseranschluss eingeschoben.

Bild 15 zeigt die Dimension der Kollektorkreis-Anschlüsse in Abhängigkeit vom Speichervolumen. Am häufigsten wird hier ein 1"-Anschluß verwendet. Es ist auch hier keine Abhängigkeit vom Speichervolumen zu erkennen. Außen- und Innengewinde werden etwa gleich häufig verwendet. Ein Speicher verwendet kein Gewindeanschluss sondern ein 22 mm-Kupferrohr.

Bild 16 zeigt die Dimension der Anschlüsse für die Nachheizung und die Raumheizung in Abhängigkeit vom Speichervolumen. Für beide Kreise werden hier stets die gleichen Anschlussgrößen verwendet. Anschlüsse in der Dimension 5/4" und 6/4" werden in etwa gleich häufig verwendet. Es ist auch hier keine Abhängigkeit vom Speichervolumen zu erkennen. Außen- und Innengewinde werden etwa gleich häufig verwendet.

Bild 14: Dimension der Trinkwasseranschlüsse

Bild 15: Dimension der Kollektorkreisanschlüsse

Bild 16: Dimension Anschlüsse für die Nachheizung und die Raumheizung

Zwei Speicher werden standardmäßig mit Konvektionsbremsen für die Anschlüsse ausgestattet. Dabei handelt es sich in einem Fall um Kunststoffteile, die in die Anschlüsse eingeschoben werden und die Strömung leicht umlenken. Im anderen Fall handelt es sich um schräg nach unten geführte Anschlussstutzen aus Stahl.

3.5 Temperaturfühler

Bild 17 zeigt die verwendeten Montagearten für die Temperaturfühler. Am häufigsten werden Klemmleisten eingesetzt. Hierunter versteht man vertikale Blechstreifen am Speicherbehälter außen unter die in beliebiger Höhe Temperaturfühler geklemmt werden können. Am zweithäufigsten sind Tauchhülsen als eingeschweißte horizontale Rohre, die am Ende verschlossen sind. Hier muss der Fühler nur eingeschoben werden und gegebenenfalls gegen Herausziehen gesichert werden. Die Höhe ist hier fix vorgegeben. Daneben werden noch Klemmbleche eingesetzt. Hierunter sind kleine Blechstreifen zu verstehen, unter die nur einen Fühler geklemmt werden kann. Fühlerkanäle sind außen am Speicher angeschweißte, vertikale Fühlerrohre, in die die Temperaturfühler eingeschoben werden können. Hier gibt es Ausführungen die nur einen Temperaturfühler aufnehmen können, oder längere Rohre, wo die Fühlerhöhe frei gewählt werden kann. Manche Hersteller sehen einfach nur Muffen vor, d. h. Anschlüsse ½" mit Innengewinde in die handelsübliche Tauchhülsen eingedichtet werden können. Wie Bild 17 zeigt werden teilweise auch Kombinationen von verschiedenen Montagearten angewendet.

Bild 17: Montagearten für Temperaturfühler

3.6 Anode

Opferanoden werden nur bei Tank-in-Tank-Speichern im emaillierten Trinkwassertank eingesetzt. Sie werden immer von oben eingebaut. Es werden ¾"- und 1"- Anschlüsse verwendet.

3.7 Prüfergebnisse

Die meisten Kombispeicher sind nicht vollständig hinsichtlich ihres thermischen Verhaltens geprüft (z. B. nach EN 12977-3/4:2012). Für alle Speicher ist aber in der EU die Angabe der Energieeffizienzklasse nach der Verordnung (EU) Nr. 812/2013, Anhang II vorgeschrieben. **Bild 18** zeigt diese für die untersuchten Speicher. Die meisten Speicher erfüllen die Energieeffizienzklasse "C". Seit dem 26.09.2017 ist dies die Mindestanforderung, um die Speicher in der EU verkaufen zu können. Vier Speicher der Energieeffizienzklasse "D" werden mittlerweile in Verbindung mit der zum Zeitpunkt der Recherche angebotenen Wärmedämmung nicht mehr angeboten.

Bild 18: Energieeffizienzklassen der untersuchten Speicher

TZS Stuttgart	Telefon (0711) 685-63536	Seite 18 von 24
Pfaffenwaldring 6	Telefax (0711) 685-63503	Marktanalyse Speicher
70550 Stuttgart	tzs@itw.uni-stuttgart.de	vom 21.03.2018

Anhang A: Übersicht Trinkwasserspeicher

Hersteller	Vaillant	Vaillant	Solarbayer	Solimpeks	Winkelmann	Viessmann	Viessmann	Buderus	Buderus	655
Speicherbezeichnung	VIHS 400	VIHS 500	SKL 200	Selicombi 300LT	V 409-2	CVB 300	CVB 500	SK 250-5 solar	SM 500	DHW 300R2
Nennvolumen []	866	005	509	245	380	300	809	290	200	300
Durchmesser ohne WD [m]	0.65	0.65	0.5	0.45	0.6	0.52	0.65	k.A.	k.A.	0.5
Hohe mit WD [m]	1.47	1.77	1.265	1.77	1.64	1.745	1.948	1.82	1.85	1.85
Gewicht [kg]	145 ohne WD	198 mit WD	95 ahne WD	78 mit WD	127 mit WD	160 mit WD	205 ohne WD	115 mit WD	230 ahnr WD	115 mit WD
Kippmass [m]	1.552	1.952	145	k. A.	k.A.	1.825	1.86	1.945	k.A.	1.876
Material	Stahl, emailliert	Stahl, emailliert	Stahl, emailliert	Stahl, ohne Emaille	Stahl, emailliert	Stahl, emailliert	Stahl, emailliert	Stahl, emailliert	Stahl, emailliert	Stahl, emailliert
Wärmeübertragen: Anzahl/Material	2/Stahl, Glattrohr	2/Glattrohr	2/Stahl, Glattrohr	2/Edeistahlwellr.	2 / Stahl, Glattrohr	2/Stahl, Glattrohr	2 / Stahl, Giattrohr	2 / Stahl, Glattrohr	2 / Stahl, Glattrohr	2 / Stahl, Glattrohr
Basondefreiten				Trinkwasser- Wärmeübertrager						
Anode:										
Art	Magnesium	Magnesium	Magnesium	ahne	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium	Magnesium
Position	aben	aben	aben		aben	aben	aben	oben	oten	oben
Anschluss	k.A.	k.A.	5/4"		k.A.	k.A.	k.A.	k. A.	k.A.	k. A.
Anschlüsse:										
WW/KW Große in /Zoll	1.00	1.00	1.00	0.75	1.00	1.00	1.25	1.00	1.25	1.00
VIVI/KVI A.T	AG	AG	9	9	90	AG	AG	AG	A15	90
Solar Größe in Zoll	1.00	1.00	1.25	0.75	1.00	1.00	1.00	1.00	1.00	0.75
Solar Art	AG	90	9	9	90	AG	AG	AG	AG	AG
Nachheizung Größe in Zoll	1.00	1.00	1.25	1.25	1.00	1.00	1.00	1.00	1.00	1.00
Nachheizung Art	AG	AG	2	9	9C	AG	AG	AG	AG	AG
Zirkulation Größe in Zoll	0.75	0.75	0.75	ahne	0.75	1.00	1.00	0.75	0.75	0.75
Zirkulation Art	AG	AG	2	entfällt	9C	AG	AG	AG	AG	90
Anschluß Heitstab in Zoll	1.5	1.5	15	1.25	1.5	215	15	1.5	1.5	940mm-Flansch
Reinigungsflansch [DN]	120	120	114	ahne	110	100	100	e.	¢.	0110
Reinigungsflansch Position	seltich unten	seitlich unten	seltich unten	entfällt	selfich unten	seitlich unten	seitlich unten	selftich unten	seitlich unten	halber Höhe
WW.Anschluss seitlich	æ	4	e(e	e.	e	e	~	eį	
Korwekti on strems e	0	0	0	0	0	0	0	0	0	0
Art der Konvektionsbremse	0	0	0	0	•	0	0	0	0	0
Temperaturfühlen										
Anzahl	~	~	~	m	2	~	2	~	2	~
Typ	k.A.	k.A.	k.A.	k. A.	k. A.	k. A.	k.A.	k. A.	k.A.	k.A.
Durchmesser (mm)	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.
Montage	Tauchhülse 12 mm	Tauchhülse 12 mm	Taudhülse 1/2" IG	Tauchhülse 1/2" IG	Tauchhülse 20x2x200	Taudhülsen 16mm / 6,5mm	Tauchhülsen 16 mm/ 6,5 mm	Tauchhülsen 19 mm	Tauchhülsen 19 mm	Taudhülsen 12 mm und 16 mm
Besonderheiten						Fühler für Koll ektorregelung im Rüddlauf	Fühler für Kollektorregelung im Rücklauf			
Wärmedämmung:										
Material	EPS	EP5	Ρſ	2	P	PI	Viles	Pl	VIIes	P
Boden: Material / Dicke [mm]	EPS/20-300	EP5/k.A.	PU/50	FU/75	PU/75	PU/50	Viles/100	PU/50	Viles/70	PU/60
Mantel: Material / Dicke [mm]	EP5/75	EP5 / 125	PU/50	FU/75	PU/75	PU/50	Viles/100	PU/50	VIIes / 120	PU/50
Deckel: Material / Dicke [mm]	EPS/50-130	EP5/k.A.	PU/50	PU/75	PU/75	PU/50	Viies/100	PU/50	Vlies / 120	PU/60
abnehmbar	a	.e.	nein	nein	nein	nein	ē.	nein	e,	nein
Verschluß	ahne	ahne	entfällt	entfällt	entfällt	entfällt	Hakenleiste	entfällt	Hakenleiste	entfällt
Prüfergebnisse:										
Energieethizienzkiasse	đ	A	5	3	Ð	n	n	5	20	2

TZS Pfafi 7058	St fen	ut w St	tg al	ar dr tg	t ing ar	g t	6									Ti Ti tz	ele ele s(ef ef Ø	on ax) ((: ((V. L	07 07 Jn	71 11 i-s	1) 1) sti	6 6	85 85 ga	5-6 5-6 art	63 63	5 5 le	36										Ν	Ла	arl	kta	ar v	Se nal or	ite 19 von 2 yse Speich n 21.03.201
Citrin TSS 500	470	k.A.	1.961	194	2.043	Stahl, emailliert	27 Stable Glattooho					musaugew	oben	k.A.		1.00	AG	1.00	AG	1.00	AG	0.75	9	1.5	110	seitlich unten	e	þ	Û		k.A.	k. A.	k. A.	Fuhlerkanal			PU	2 3	2 8	2 ž	2	nen	entfallt		,
Cltrin TSS 400	380	k.A.	1.631	161	1.74	Stahl, emailliert	2 / Stabl. Glattenie					Magne sium	oben	k.A.		1.00	AG	1.00	AG	1.00	AG	0.75	5	1.5	011	seitlich unten	10	0	ð		k.A.	k.A.	k.A.	Fühlerkanal			Ρ	2 3	2 3	2 2	2	nein	entfallt		2
Citrin TSS 300	36	k.A.	1.834	113	1.892	Stahl, emailliert	2 / Stahl Glattenie					Magne sum	oben	k.A.		1.00	AG	100	AG	1.00	AG	0.75	51	1.5	110	seitlich unten	19	0	0		k.A.	k.A.	k.A.	Fühlerkanal			Pd	2 3	2 3	2 2	2	nein	entfailt		,
Vaillant VIH S1 350/48	335	0.55	17	129.2 mit WD	1.835	Stahl, emailliert	1 / Stahl Glamonic	Soeicher für drain-	back-System			Magne sum	oben	k.A.		0.75	AG	anha	entfällt	0.75	AG	0.75	AG	nicht möglich	ohne	entfällt	12	0	o		0	k.A.	k.A.				Ы	Mar of the	DI 1 20	D11/20 100	ACT - OF / OL	nein	entfallt	•	,
Vallant VIH S1 250/48	254	0.5	1.539	90.7 mit WD	1.65	Stahl, emailliert	1 / Stahl, Glaterohr	Soeicherfür drain-	back-System			Magnesium	oben	k.A.		0.75	AG	anto	entfällt	0.75	AG	0.75	AG	nicht möglich	ohne	entfällt	19	0	0		ð	k.A.	k.A.				bu	Di1/20/364	tor, or tor	Del 1 20 Arc	CTT. OC IO.	nein	entfailt		,
Villant VIH S1 150/48	162	0.5	1.064	62.7 mit WD	k.A.	Stahl, emailliert	1 / Stahl Gaterohr	Soeicherfür drain-	back-System			Magnesum	oben	k.A		0.75	AG	aha	entfällt	1.00	AG	0.75	AG	nichtmöglich	ohne	entfällt	n	0	0		0	k.A.	k.A.				h	Di 120 364	+07 . 00 / 10	BUL/20 MC		nein	entfailt		,
VIH 52 350/48	082	0.55	17	135 mit WD	1.835	Stahl, emailliert	7 / Stahl Gaternin	Speicher für drain-	back-System			Magnesium	oben	k.A		0.75	AG	ohno	entfällt	1.00	AG	0.75	AG	nicht möglich	ohne	entfällt	e	0	ð		"	k.A.	k.A.	Tauchhülse			Πđ	ADE 01/10	DU 20- 100	BUL/20 100		nein	entralit		2
VIH 52 250/48	246	0.5	1.539	104.5 mit WD	1.65	Stahl, emailliert	7 / Stable Glattenher	Speicher für drain-	back-System			misaudew	oben	kA		0.75	AG	ohno	entfallt	1.00	AG	0.75	AG	nicht möglich	ohne	entfällt	æ	0	0		1	k. A.	k.A.	Tauchhülse			ρn	D11/20, 10A	101 / CV	DI (20 110	ctt .nc/nJ	nein	entfallt	•	2
HTE 14 PA	250	0.5	1.63	70-mit WD	kΛ	Stahl, ohne Emaille	1 / Stahl Glattoohu	Trinkwasser-WÜ	extern			ouue				0.75	AG	0.75	AG	0.75	AG	ohne	entfällt	1.5	ohne	entfällt	e	0	0		2	k. A.	k. A.	Tauchhülsen			ρ	CC/103	Del / CD	Del 100	ne ne ind	nein	enttalit		
Wagner ECDbasic 500	005	0.65	1.79	215 ohne WD	1.952	Stahl, emailliert	2 / Stahl Glattonho					magnasium	oben	5/4" IG		100	AG	0.75	AG	0.75	AG	0.75	AG	1.5	110	seitlichunten	ē	1	Convectrol		2	k.A.	k.A.	Tauchhülsen			ρn	EN VED	DI / CUMPING / C		00/04	nein	entfallt		2
1er steller speicher be zeich nung	Venvolumen []	Durchmesser alone WD [m]	46he mit WD [m]	Sewicht [kg]	dippmass [m]	Vaterial	Witcmeitherteisen Anzahl/Material		Bes anderheiten	transfer a	4000E	art .	asition	Ans chius s	tes chilisses	WW/KW Größe in /Zoll	WW/KW Art	Sclar Größe in Zoll	Solar Art	Vachheizung Größe in Zoll	Vachheizung Art	Zirkulation Größe in Zoll	Zirkulation Art	Anschluß Heitstab in Zoll	Reinigungsflansch [DN]	Reinigungsflansch Position	WW-Anschluss settlich	Konvektions bremse	Art der Konvektionsbremse	fempera turităhler:	Anza hi	[yp	Durchmesser [mm]	Montage	Bes anderheiten	Märmedä mmune:	Vaterial	Advantation (Nicha (mm)	olucit, Material / Dicke (mm)	Violute Material / Dicks [mm]		abnehmbar	/erschluß	Profergebnisse:	CIRCING CONTRACTOR STATE

TZS Pfaf 705	St fer 50	iut IW St	tg al	ar dr tg	t ing ar	g (t	6							ר ד t	Ге Ге zs	le le ©	fo fa Øit	n x w	(C (C . u)7)7 ni	11 11 -s	l) l) tu	68 68 tto	35 35 3a	-6 -6	33 33 d	53 50 e	36)3										М	ar	kt	tai	Se na /0	eite 20 von 24 lyse Speicher m 21.03.2018
TISUN BE-55P-2R 1000	967)	0.00	2.07	272	2.15	Stahl, emailliert	2 / Stahl, Gattrohr		a factor and the	misaugew	1"			0.75	AG	1.00	AG	1.00	AG	0.75	90	1.5	180	seitlich unten	ē	0	¢		2	k. A.	k. A.	Tauchhhülse			Wilee	Vilac / 100	Vitas / 100	Viies / 100		Hakanlaiste		J	
TÍSUN BE-SSP-2R 750	208	0.70	2.043	221	2.098	Stahl, emailliert	2/ Stahl, Glattrohr		Annual and	musaugew	1"			0.75	AG	1.00	AG	1.00	AG	0.75	ĐV	1.5	180	seitlich unten	ē.	0	¢		2	k.A	k.A.	Tauchhhülse			Villae	Vilas / 100	Vitas / 100	Viles / 100	.5	Hakenleiste		U	
TISUN BE-SSP-2R 500	40		1.921	149	2.023	Stahl, emailliert	2 / Stahl, Glattrohr		A to a set of the set	megnesium	00en 1"			0.75	AG	1.00	AG	1.00	AG	6.75	AG	1.5	110	seitlich unten	<u>a</u>	0	0		2	k.A.	k.A.	Tauchhhúlse			H	D11/6 A	PU/k.A.	PU/k.A.	nein	ontfällt		U	
TISUN BE-SSP-2R 400	364	L A	1.591	132	1,712	Stahl, emailliert	2 / Stahl, Gattrohr		Above of the	unisaußew	1900			0.75	AG	1.00	AG	1.00	AG	0.75	AG	1.5	110	seitlich unten	вį	0	0		2	k. A.	k. A.	Tauchhhülse			14	P11/64	DU/k A	PU/kA	nein	ontfallt		J	
NU217 86-55P-28	382		1.794	116	1.876	Stahl, emailliert	2/ Stahl, Glattrohr		A located and	unsaußew	1,16	2		0.75	AG	1.00	AG	1.00	AG	0.75	AG	1.5	110	sei tli ch unte n	eį	0	0		2	k.A.	k. A.	Tauchhhülse			ы	D11/4	DU/LA.	PU/kA.	nein	entfällt		J	
TISUN BE-SSP-2R 200	194		1.432	75	1,541	Stahl, emailliert	2 / Stahl, Glattrohr		A for each of	misaulaw	1	2		0.75	AG	1.00	AG	1.00	AG	0.75	90	1.5	011	seitlichunten	еį	0	0		2	k.A.	k.A.	Tauchhhülse			ы	DILVA	DIJ/64	PU/kA	nein	entfällt		U	
Ritter Aqua 500	506	700	1.806	181	2	Stahl, emailliert	2 / Stahl, Glattrohr		a because the second	megnesium	11/4"			1.00	AG	1.00	AG	1.00	AG	0.75	AG	1.5	011	seitlich unten	ę	0	ò		3	k.A.	k.A.	Tauchhhülse			H	P11/26	D11/25	PU/ 75	nein	entfällt		9	
Ritter Aqua 400	612	96	1.683	144	1.88	Stahl, emailliert	2 / Stahl, Glattrohr		a formation of the second	mulsangew	1 1/2"	1		1.00	AG	1.00	AG	1.00	AG	0.75	AG	1.5	110	seitlich unten	ē	0	¢		ę	k.A.	k. A.	Tauchhhül se			a	PIL/ 2C	DI / 25	PU/25	nein	onfallt		9	
Ritter Aqua 300	744	50	1.722	117	1.87	Stahl, emailliert	2 / Stahl, G attrohr		and the second second	misaudew	11/2"	-		1.00	AG	1.00	AG	1.00	90	0.75	90	1.5	110	seitlich unten	eį.	0	¢			k. A.	k.A.	Tauchhhülse			ы	P11/25	D11/25	PU/25	nein	entfallt		9	
Ritter Aqua 200	30.6	00	1.23	88	1.45	Stahl, emailliert	2 / Stahl, Glattrohr		- the second -	muis augew	11/2"	-		1.00	AG	1.00	ÅG	1.00	9V	0.75	AG	1.5	110	seitlich unten	Βį	0	0		m	k.A.	k.A.	Tauchhhülse			ž	Bit 75	B1/25	51/12	nen	ontfallt		9	
Hersteller Speicherbezeichnung	Neorodimeo II)	Durchmasses ches MD [m]	Höhe mit WD [m]	Gewicht (ke)	Kippmass (m)	Material	Wärmeübertragen: Anzahl/Material	Besonderheiten	 Anode:	AIT.	Anschluss		Anschlüsse:	WW/KW Größe in /Zoll	WW/KW Art	Solar Größe in Zoll	Solar Art	Nachheizung Größe in Zoll	Nachheizung Art	Zirkulation Größe in Zoll	Zirkulation Art	Anschluß Heitstab in Zoll	Reinigungsflansch [DN]	Reinigungsflansch Position	WW-Anschluss seitlich	Konvektionsbremse	Art der Konvektionsbreitise	Temperaturfühler:	Anzahl	Typ	Durchmesser [mm]	Montage	Besonderheiten	M/S control Services on	Material	Reden: Material / Dicke [mm]	Mantel: Material / Dicks [mm]	Deckel: Material / Dicke fem)	ahoehochar	Verschluß	Prifferore braics e:	Energieeffizienzklasse	

TZS Stuttgart	Telefon (0711) 685-63536	Seite 21 von 24
Pfaffenwaldring 6	Telefax (0711) 685-63503	Marktanalyse Speicher
70550 Stuttgart	tzs@itw.uni-stuttgart.de	vom 21.03.2018

Anhang B: Übersicht Kombispeicher

Hersteller	M	Roth	LINK3	Offrin	Overtrop	Oventrop	Chemowerk	Chemowerk	Saler	Sailer
5 peicherbezeich nung	Latento XXX 500	Thermotank Quadroline TQ-K 850	13- U1000 HSL	545-2 1000/790 K	Begucor WHS 1000	Regulate WHS 800	KT 1000 SC WT3	KT 1500 SC WT3	Hybrid 850-Q	Hybrid XXII-oval
Nentrolumen []	536	95	1000	832	1000	800	007	1500	650	1200
Volumen Trinkwassertank []	entfällt	entfallt	entfällt	entialit	entfallt	entialt	entfällt	entfallt	entralit	entfällt
Durchmesser onne wullim	0.62 × 0.62	56.0 7.67.0	0.79	61.79	0.79	67.0	1125290	0.75×1.2	6.79	0.7×1.2
Hote mit WD [m]	158	197	213	2.08	237	1.84	1.57	1.97	2.09	2.05
Genicht (Ng.)	28 mit MD	116 ohne WD	214 phne WD	257 ohne WD	198.5 ohne WD	185 of ne WD	69 ohne WD	110 ohne WD	195 ohne WD	220 ohne WD
Kippma ss [m]	1.76	2.016	213	2.00	12	181	kΑ	k.A.	k.A.	k.A.
Miccontal Bohillion	Polveraevien	Kunststoff-Composite- Wärmespeicher (Fibre/Plast- Verbundtechnalorie)	Net5	Ne S	INers	Net5	212	NaC Stark	[VEI	Mart
Wärme übertragen Wamwassen	1	1	-	-		•			•	0
Wärme übertrager Wamwasser Auführung	Edelstahl-Wellrohr	Edelstahl-Wellrohr	Edel stahl-Well rohr	Edelstahl-Wellrohr	Edelstahl-Wellrohr	Frischwasserstation	Ed elstahl-Wellrohr	Edelstahl-Wellrohr	Frischwassenstation	Frischwasserstation
Wärme übertrager Solar	1	1	1	2	1	1	1	1	1	1
Wärme übertrager Solar Ausführung	Edelstahl-Wellrohr	Edelstahl-Wellrohr	Edel stahl-Wellrohr	Stahl-Gisttrohr	Stahl-Glattrohr	Stahl-Glattrohr	Ed elstahl-Wellrohr	Edielstahl-Wellhohr	Kupfer-Rippenrohr	Kupfer-Rippennohr
Wärme übertrager Raumheiung/Nachheizung	1	9	0	Φ	9	Ŷ	1	1	0	0
Wärmeübertrager Raumheiung/Nachheizung Ausführung	Edelstahl-Wellrohr	entfällt	entfallt	entialit	entfällt	entfallt	Ed elstahl-Wellrohr	Edielstahl-Wellhohr	entialit	entfällt
thermische Schichteinnichtung Kollektorkreis	0	9	1	۰	0	0	•	0	-	1
thermische Schichteinrichtung Heizungsnücklauf	0	0	0	•	1	1	•	0	-	1
Besond onthe Hitlen	druckloser kubischer Kunststolffspeicher	druckbeaufschlagter, ovaler Kanstotoffspeicher, kubische WD	th. Schichteinnichtung für Keille Aterkreis	2 Kollektorkreis-WÜ	th. Schichteinrichtung für Heickreise und Fritwa	Trinkwasser-WO extern, th. Schichteinrichtung für Heitungsrücklauf	druckloser, ovaller Speicher	druckleser, evaler Speicher	4 th. Schichteinrichtungen	ovaler Speicher
Arode:	ahne	ohne	ohne	ohne	ohne	ohne	ohne	ohne	ohne	ohne
Art	entfällt	entfällt	entfällt	entialit	entfällt	entfallt	entfallt	entfallt	entialit	entfallt
Position	entfällt	entfällt	entfallt	entialit	entfälk	entalk	entialit	e ntfält	entiallt	entfallt
Anschluss	entfällt	entfällt	entfallt	entialit	entfallt	entiallt	entfallt	entfallt	entiallt	entfällt
Anschligs en:										
WW/KW Griße in /Zell	125	115	1.25	125	15	15	1.15	1.25	ohne	ohne
WW/KW Art	AG	5	AG.	AG	2	2	AG	AG	entislit	entfällt
Solar Größe in Zoll	125	125	0.75	-1	-	1	1.25	125	6.75	6.0
Solar Arc	AG	9	AG	ā	AG	46	AG	AG	AG	AG
Nathheizung Größe in Zoll	1.25	125	1	15	15	15	1.25	1.25	1.25	1.25
Nachheizung Art	AG	9	AG	g	9	9	AG	AG	IJ	g
Raumheitung Größe in Zoll	125	115	1	15	1.5	1.5	1.25	1.25	1.25	1.25
Roumheitung Art	AG	9	46	ē	2	2	AG	AG	ß	2
Zirkulation Größe in Zoll	ahne	ohne	ohne	ahne	ohne	ohne	ohne	ohne	ohne	ohne
Zirkulsticen Art	entfällt	entfällt	entfällt	entialit	entfallt	entfallt	entfallt	entfallt	entialt	entfallt
Anschluß Heitstab in Zoll	15	ohne	ohne	ohne	15	ohne	ohne	ohne	15	1.5
Reinigungsflansch	ahne	ohne	ohne	ahne	ohne	ohne	ohne	ohne	ohne	ohne
Konveku onsbremse	o	Φ	o	Ŷ	Ð	¢	Ŷ	ø	Ŷ	0
Art der Konveksionsbremse	0	0	٥	۰	0	۰	¢	0	۰	0
Temperaturfühler:										
Anzahl	k.A.	80	4	k.A.	01	93	k.A.	k.A.	k. A.	k. A.
Typ	k.A.	k.A.	k.A.	kA.	k.A.	kA.	k.A.	k.A.	k.A.	k.A.
Durchmesser (mm)	k.A.	k.Α.	9	kA.	kΑ	kA.	k.A.	k.A.	k.A.	kΑ
Montageart	Tauchhúise	Tauchhülse	Tauchholse	Klemmleiste	Kie mrble che	Klemm blech e	Tauchhülse	Tauchhülse	KI emmleiste	Klemmleiste
Ausföhrung / Besonderheiten	mehrene Fühler pro Hälse möglich									
Wärme dämmung:										
Boden: Material	βE	EPS	ohne	Weichschaum	Vlies	Viles	R	ηd	Vlies	Vile:
Boden Dicke [mm]	98	30	entfallt	9	120	100	я	8	8	9
Mantel: Material	PE	EPS	VIies, PU	Weichschaum	EPS, VIP	Viles	Viles	Vies	Vlies	Vites 1
Mantel Dicke [mm]	98	021	100	100	200	150	120	120	100	100
Deckel: Material	PE	EP5	Viles	Weichschaum	Vlies , VIP , Neopor	Viles	Viles	Vies	Viles	Viles.
Deckel Dicke [mm]	98	99	100	100	25 + Vlies 120	150	120	120	100	100
abrehmbar	nein	2	<u>n</u>	-	-	-	-	-	-	-
Verschluß	entfällt	ohne	Hakenleiste	Reissverschiuss	Makenleiste	Hakenleiste	Hakenleiste	Hake nie is te	Hakenleiste	Hakenleiste
PrOf erg etwisse:										
Label	U	J	U	c	¥	U	0	0	5	J

TZ Pf 70	SS affei 550	nw S	tu	d tt	rt rii ga		g 6 t	8								Telefa Telefa tzs@i	on ix tw.	(C (C u)7)7	11	1) 1)	6 6	88 85 98	5-0 5-0	63 63	35 35	53	63											1	M	arkta	S ana vo	al on	ite ys n :	2	22	2 v Sp 03	v()e 3.	ic 2	12 :hi 01	24 er	
W lears	Wheel 66-1	669	entialit	0.00	2.00%	22	1.96		Stahl	1	Edelstabl-Wellrohr	Stabl-Gistrader	0	entallt	0	0		ohne	entfallt	entfallt	- FREEDOL		1.15	g	1	Q	15	2	15	. ت	ohne	entant * r	ohne	o	0		м	k.A.	k A	Klemmleiste			Viet	100	Viet	100	Vites	007		Hakenleiste		0
Wikora	Wilcovi Twin 805	ž	entialle	g o	2 263	280	2.03		MaR	1	Edelstahl-Wellrohr	Grahl-Glamohr	0	entialit	Ŷ	0		ohne	entialit	entialit	entrait		1	AG	1	9	1.15	AG	1.15	AG .	ohne	entallt	ohoe	9	9		1	k A	2/2.	Klemmleiste			Viles	100	Vites	100	Vies	100		Hakenleiste		
TM4	VIDEN	an	entfält	0.79	1.54	175 ohne WD	1.893		Stahl	1	Edel stabl-Wellsche	Disto-Back	0	entisit		A Schichteintchung ür Racklauf Heitung Schreiter Schreiten		ohte	entfallt	entialt	entrailt		0.75	AG	125	g	15	<u>e</u>	15	2	0.46	entrain	a de la	0	0		2	k.A.	k.A.	Tauchholse			Vlies	3	EPS, Villes	02 + 035	Vlies	150	1	Reissverschluss		
water	Rato RC 1000-75	10001	entfailt	80	123	237 ohne WD	121		Stahl	0	Frischwassenstation	Set-fürthrohr	1	Stahl-Giattrohr	ø	W ¹ für Nachheitung, 1		ohne	entfällt	entfallt	entraint		ohne	entfällt	125	AG	125	AG	12	AG	ohne	entraint	ohne	1	Convector		-11	k.A.	k A.	Niemmleiste	Z vertikale Klem mieisten		Vies	8	Viles	971	Viles	971		Hakenleiste		
Panarotio	Hygiosol 800	954	entfallt.	0.75	1.76	180 ohne V/D	цм		5 tahi		Edelstahl-Welltohr	Sabl-Glathohr	9	Q	ø	•		ohne	entisiit	entisit	entraint		1.25	9	-	AG	1.5	46	125	90	ohne	entraint.	ohne	ą	P		4 4	k A	kΑ	k A.			Vitas	s	Vites	81	Viles	061		Hakenleiste		
khûco	THE 1000 FALL		entialit	670	2.17	185 ohne WD	2.068		Stahi	1	EdebraM-Wellrohr	Stabl-Gistrohr	0	0	0	0		ohne	entialit	entalt	entrait		1	46	6.0	46	1	40	-	AG.	ohne	envalit	ohne	0	0		2	k.A.	k.A.	Fühlerkansle	vertikaleTemperatur Fählerkanale, Zangenklemmung		ohne	entislit	Weichschaum	120	Welchschaum	120	-	Hakenleiste		0
Monier	Braas Sol ar Kombisseicher DM+	-	entialle	r o	1.87	160 ohne WD	1.828		Stahl	1	Edelstahl-Welfrohr	Grahl-Glamenhr	0	•	1	1 th. Schichteinrichtung Für Solar und Mainterrechtung		ohne	entfallt	entialit	entrailt		1.15	AG	6.7	AG	1.5	g	1.15	5	entallt	ZINUIZTIONSIBILE	ohoe	9	9		k A	1.A.	LA.	Klemmleiste			Vies	8	Viet	120	Vites	120		Hakenleiste		a
655	PSR1000	-	entfallt	0.70	213	176 ohne WD	2.08		Stahl	0	Frischwassenstation	Stable Clattache	0	0	0	Torkwasser-W0 extent th toktheinstchtung für		chne	entfallt	entian	enuant		chne	entialit	1	AG	15	g	15	2	-	au 	ohea	0	0			ίΨ.	KA.	Klemnbleche			ohre	entialit	Viles	100	Viles	100		Hakedeiste		3
655	P5 KBRDE	5	antisit	2.0	178	135 ohne WD	1.11		Stahl	0	Frischwass enstation	Stabl-Glattenhr	•	•	•	Trinkwasser-WÜ extern, th chichteinnichtung far S		ohne	entfällt	entfallt 	CULTRIFT		ohne	entfällt	1	AG	15	10	15	9	-	AU	where				4	k.A.	k.A.	Klemmblethe			ohne	entfallt	Vites	991	Vites	99		Hakenieiste		
655	300585.4	400	entisite	905	1.22	110ehne WD	11		StaN	0	Fritchwatserstation	Seabl-Edaterobr	a	a	o	Trinkwasser-WD extern, th schichteinricht ung für 5 schichteinricht ung für 5		ohnt	entfallt	centfallt	entrality		ohne	e otfallt	1	AG	15	2	15		-	Au	ohae	9	9		4	k.A.	k.A.	Klemmbleche			ohne	entialit	Viles	100	Viles	100		Hakenleiste		
Hesteller	Speicherbezeichn ung	Manada maan (1)	Volumen Trinkwassenank []]	Durchmesser of ne MD (m)	Higher mit WD [m]	Sewicht Roll	(inprma is [m]		Vaterial Behälter	Wärmeübertrag er Warmwass er	Närmedbertrager Warmwass er Auföhrung	Mirmeihert tager follar Ausfilheine	Värmeubertrager Raumhetung/Nachhetzung	Närmeübertrager Raumheiung/Nachheizung Aus führung	thermische Schichteinnichtung Köllekterkreis	rierreis ne schrötenn mund, Hellengsruthaur Hende Amilee		Anode:	K	Postern	AIR SCIINIUSS	unschlässe:	ww/xw Größe in /Zoli	MW/NW Art	solar Größe in Zoll	edar An	Vachheizung Größe in Zoll	Vachheizung Art	Raumherzung Größe in Zoll	taumnerung Art	Origitation Große in Zoll	cinculation and	definitions of address	(onwistionsbeemse	un der Konvelsionsbremse	Tempera turfühlen.	Anahl	¢,	Durchmesser [mm]	Nontageart	tusführung / Besonderheiten	Witmediammune :	aden: Materia	Boden Dicke [mm]	Mantel: Material	Vantel Dicke [mm]	Deckel: Material	Deckel Dicke [mm]	behmbar	Verschloß	Prüfengebnisse:	abel

TZ: Pfa 70	S St affer 550	tut hw St	tg al	dr tc	nt in ja	rt	6	3									Te Te tzs	lefon lefax @itw	(0 (0 /.u	07 07	1 1	1) 1) stu	6 6	85 85 ga	i-e rt	53 53	35 15 1e	36	3										į	M	ark	s tan vo	iei aly om	te /si	2 e : 21	S C	v pe)3	oi eic	n : ch 20	24 161 18	1 r 3	
Unikara	WPKR 1000 Twin	629	151	990	1%	88	1%		a state of	unix.	And And	Annuary 1	Stahl-Glatrohr	1	Glatrohr	0	0	Tank-In-Tank-Spetcher mit Jus. WUIm Tank		Moredum	Deckel	1,		0.75	AG	-	16	1.5	AG	53	AG	50	AG 15	142 mm	0	0		ų	k A	KA.	Mulfen	4×1/2*16		Vies	200	VIIES	200 Vilac	a 9	ei	Makenleiste		J
Wilcon	WPKR 750 Twin	274	157	0.75	2	992	1.55			Nan'	Particula.	Statik ank	Stahl-Glattrohr	1	Gatrokr	0	0	Tark-In-Tark-Spetcher mit zus. WÜim Tark		Machedium	Derical	4		0.75	AG	-	9	125	AG	1.25	AG	0.75	AG 15	142 mm	0	0		4	k A	k A.	Mufflest	4×1/2°16		Vies	200 Wise	Alles	200 Mise	Carlos Carlos	aq =	Makenieiste		0
Mion	WPKR 500 Twin	Sec	119	0.75	1.73	235	156			iuer:	description of	Statillerk	Stahl-Gaturder	1	Glaurchr	•	•	Tank-In-Tank-Spetcher T mit zus. Mülim Tank		Manadium	Deckel	1		0.75	94		9	15	ş	1.15	AG	0.75	16	142 mm		•		+	k A	k.A.	Multen	4x 1/2*1G		Vies	100 Mian	Saily .	Miss	1	ei	Haberleiste		2
Witers	NPKR3005 H Twin	1004	280	0.79	2.175	307	2.19			Nan.	A sublimit	wannew .	Stahl-Glaturohr	1	Glattrohr	•	•	Tark-in-Tark-Speicher T mit zus. WÜim Tank	ohne	ondalt	and Gh	endalt		4	9		9	1.25	946	1.25	46	0.75	ANS Abrea	180mm	0	0		8	k.A.	2	Fühle Kanßle			Vies	100	2115	Nie:	100		Hakenleiste		0
work	WPK8 805 H Twin	×	12	0.75	2 005	92	2016			overs.	A A A A A	1 L	Sahl-Glaurchr	1	Gaturohr	0	0	Tark-In-Tark-Spetcher mit zus. WÜim Tark	ohne	and (2010	and (5)1t	ent/\$01.		1	16	-	16	125	AG	1.75	AG	0.75	AIS	180 mm	0	0		m	k.A.	71	Fühlerkanäle			Vites	100	San	200 Wine	an a	ia.	Hakenleiste		C
Wikon	MPHOR 605 H Twin	648	277	0.65	1.985	235	1.88			1000	de alternation	Annunk .	Stahl-Gaurohr	1	Glaurohr	•	•	Tankin-Tank-Speldher mit aus. W.Dim Tark	ofme	ontialt	ont/Blt	entialt			9		5)	15	54	1.15	AG	0.75	Alma	180mm	0	•		~	k.A.	3	Fühlerkansle			Vites	Ulter	SallA	Vites	an.	1a Ia	Haberleiste		0
Wibea	Vilice of 2005-1	2010	ent/Alt	1.2	2.09	460	21			Name -	Partnet women	cut starth-Weintone	Suhl-Glatrohr	0	eneralli	0	0		chne	ent/201	ent/dit	end Alt		125	9	125	51	ev	51	2	Ð	ohne	eru all	chine	0	0		m	k.A.	K.A.	Ki emmle iste			Viles	100	Alles	Viac	81	104	Hakenleiste		o
ncdiW	Wikosol 1505-1	1446	entists	1	2.15	379	2.13			insix.	Partners Income	COCKARI-WEATON	Stahl-Glattrohr	0	entisit	0	0		ohse	entitie	antiste	entilk		125	9	125	51	2	51	2	NG	ohne	entrant.	ohne	0	0		m	κA	KA.	Klemmleiste			Vies	100 Vilae	7005	View	910	100	Haitenleiste		o
Wikors	Wilcosof 1006-1	199	endalt	0.79	2,155	160	2.15			Xaft	Factorie welling	Edels until wellight	Stahl-Gaurohr	•	enulält	•	•		ohae	entials	entialt	enulält		1.25	9		01	1.5	16	15	16	ohne	enuari.	chine	0	0		m	k.A	k.A	Gemmleiste			Vites	Miar	Sally	Vies	001	-vor	Hakenleiste		J
Whors	Whosel 805-1	ŝ	ensials	0.79	1.88	53	1.845			Num.	Partnets multiple	L TRUTHAM-INFINITE	Sudil-Glaturohr	•	entials	•	•		ohne	entials	entials	entralit		1.25	9	1	9	1.5	9	1.5	9	ohne	er(1.011)	chine		•		m	k.A.	k.A.	Kiemmietste			Vies	100 Miles	sain.	100 Viet	90	19	Hatenleiste		u
Hersteller	Speicherbezeichnung	Na novoluman [1]	Volumen Trinkwassertank [J]	Durchmesser onne WD [m]	Höhe mit WD [m]	Gewicht [kg]	Ktapma ss [m]			Material Benalder	warmeuberunger warmwasser	warmeuberu ager warmwasser Aururung. Wismmitheritsten Octor	Wistmeubertraker Solar Ausführung	Wärmeüberträger Raumheiung/Nachheizung	Wärmeüberunger Raumhelung/Nischheizung Ausführung	thermis che Schichteinnichtung Kollektorkreis	thermis the Schichteintchung Helzungsrücklauf	Besondeftelven	A note:	Ac.	Postition	A nschlus s		A nachilasse: WWARM Größe in /Zoll	WW/WW AR	Selar Größe in Zoll	Sedar An	Nachheizung Gid8e in Zoll	Na chheizung Art	Raumheisung Größe in Zoll	Raumhei zung Art	Zirsulation Große in Zoll	Z ITSUIALION ATT A southling Mai south in Zadii	Remains of lange of	Konvektionsbremse	Art der Konvektionsbremse	Temperauurfühlen	Anahi	Typ	Durchmesser (mm)	Monuseant	គំបទបើកហេស្ហ / Besonderbelten	Wärmedämmung:	Boten: Material	Bioden Dicke [mm]	Manuel: Mateman	Mantel Dicke [mm]	Dericel: Materia: Dericel (Selie [mm])	almahmbar	Veschluß	Profergebnisse:	Label

TZS Pfaffe 7055	Stu env	utt wa Sti	ga alc	art Irii ga	ng	g (t	6								T T t	Telefor Telefax zs@itv	n (((0 0 ur	71 71	11 11 •st) (u	68 68 ttg	5- 5-	-6 rt.	38 38 de	53 50 e	36											1000	м	arkta	Se ina voi	eit ly m	e se 2	2	4 SI				24 16	1 7 3
Bitter	Aqua EXPRESSO 11800	815	entalit	160	116 ahaa WD	2.048		Stabl	0	Fritchwasterstation	0	wasser-western	entialt	0	0	schräge Anschlussstutte n	abos	onne entistre	and the second	entialit			0000	entialit	1		AG		AG	ohne	entialit	15	ohne	and the second se	sturge weathers interes in	5	k A	EA	Tauchhälse	S Tauch halten wasgerecht/ schräg		Vilet	100	PU-Hartschaum	R	PU-Hartschaum	8	1	Reissvenschluts	
to-tolar than	DI 1200-II	1200	111Au	0,6X4,6	t	2.17		đ	1	Edelstahl-Wellrohr	1 sectored monthly	LGeiscan-weiron	Edelstahl-Wellrohr	0	0	druckloser, kabischer FP-Speicher	chee	entialt	antitite .	entfallt			100	Rohr	17 Miles	23 mere	Rohr	1.25	9	ohne	entfallt	15	ohre	5 4		1.4	4.4	2.4	Tauchhülse	1 Tauchhülse senkrecht		XP5	100	Holzfater	760	Holzfater	400	2	Holtwenshalung	ĩ
Roth Thermotank Quadroline TQ-K 850	mit Thermocost plus	958	entialit	197	115 Abre WD	2.016	Kunstitleff-Composite- Witmespeicher (Fibre/Plact-	Verbundtechnologie)		Edelstahl-Welliohr	And a state of the	COELSCAT-WEILDON	entialit	0	¢	dnuckbeauf schlagter, ovaler kunststøffspeicher, kubische WD	ohna	antisiit	anteislite	entialit		3,	9	9	9	1 26	9	13	ā	ohne	entidit	ohne	ohne		•		k A	8.A	Tauchhülse			563	96	563	951	543	8	el.	ahne	
Thermic Decign	3001 MJ-5H	193	entilit.	2.09				Stahl	1	Edel stahl-Wellsohr	2	Stant-unitripar	entfallt	0	0	2 Kollektotkreis-WaT		entialit	and All	entialit		2	91	u .	1	21		15	2	ohne	entfallt	ohne	ohne			1	k A	k A	Klemministe + Muffen			ohne	entait	Vites	200	Viet	007	1	Reissverschluss	
COSMO	CPSHMZWT 1000	2000	entialit	120				Stahl	1	Ede htahl-Weilrahr	2	2010-44BUDA	entfallt	0	0	2 Kollektorkres-WuT		entistit	anetalle	entialit			10	De .	1	84	9	15	10	ahne	entialit	15	ahoe			1	k A	k A.	Nemnleisse - Muffen			Vites	20	Vies	90	Viles	100	=	Hakenleiste	,
Wiera	WPKR1000	525	107	81	390	155		Stahl	1	Stabitank	1 total manufactor	100000000000000000000000000000000000000	entisit	0	0	Tank-in-TankSpeicher		Matterio	Darial	3/4"			0.0	40	- 5	1.26	90	12	46	0.75	90	15	142.mm	2 2	2		44	A.A.	Multen	3x 1/2" 16		Viet	100	Vies	100	Viet	100	a.	Hak enleiste	3
Wilsona	WPKR 750	724	107	5	240	195		51251	1	Stahitank	1 Ante estatuato	2000-001000	entialit	0	0	Tankin-Tank Speicher		Mamerican	Darbal	3/4"			0.0	g .	- 0	1 26	Q	13	AG	6.5	90	15	Mine			1	k A	k A.	Muffen	3× 1/2" 1G		Viet	100	Vites	100	Vites	100	4	Hakerleste	
Heest olier	Speicherbezek hnung	Nennudumen (I)	Volumen Trinkwassertank []	Hite wit MD (w) full	Gewicht [la]	Scorrass [m]		Material Behälter	Wärmeßbeurager Warmwasser	Wärmeldbetrager Warmwasser Auflührung	Witthe dbertrager Solar	Warme uper vay or boar Austruments Witness that no ar Roumbeurs Machhelt no	Wittengbetras er Raumheiure/Nachheiune	thermische Schichteinrichtung Köllektorbreis	thermische Schichteinzichtung Heizungsrücklauf	aesonaerheiten	Arresta	Art	Desition	Anschluss		Anschlüsse:	MINTER OLDER II (CUI)	WW/WW Art	Solar Greek III 2011	Martheature Große in Zoll	Nachhei zuns, Art	Raumheizung Größe in Zoll	Raumheizung Arc	Zirkulation Größe in Zoll	Zirkulation Arr	Anschluß Heitstab in Z oll	Reinigungsflämsch	ADDREED UNDER THE CONTRACT OF ADDREED ADDRE	Autor Autorial surgers a	Anzahl	To	Durchmesser[men]	Montageart	Auslühnung / Besonderheten	WSmedsmming:	Boden: Material	Boden Dicke [mm]	Manuel: Material	Mantel Dicke [mm]	Deckel: Material	Deckel Dicke [mm]	abnehmbar	Verschlaß	rui eq eoniste.

Anhang D: Ausschreibung Standardspeicher (Bsp. Bruns Heiztechnik)

Von: Bachmann, StephanGesendet: Montag, 18. Februar 2019 10:51An: info@bruns-heiztechnik.deBetreff: Ausschreibung bivalenter Trinkwasserspeicher

Sehr geehrte Damen und Herren,

im Rahmen des Projekts "KoST"[1], in dem es um die Kostenreduzierung in der Solarthermie durch standardisierte Komponenten und Schnittstellen geht, wurde u. a. ein Standard für einen bivalenten Trinkwasserspeicher erstellt. Zur Ermittlung des solaren Wärmepreises bzw. der möglichen Kostenreduktion durch Standardisierung kombiniert mit weiteren Maßnahmen möchten wir Sie bitten eine Kalkulation des Verkaufspreises für diesen Speicher mit einem Volumen von 300 l zu erstellen.

Ausführung:

- Behältermaterial: S235JR-AR, Mantel: 3 mm, Klöpperböden: 4 mm, außen grundiert, innen emailliert nach DIN 4753

- keine Fußkonstruktion für den Speicherbehälter

- 1 Magnesium-Opferanode 1 1/4"

- 1 Muffe für Heizstab 1 ¹/₂"

- 1 Reinigungsflansch nach DIN EN 12897, Ø 120 mm mit Flanschdeckel und Verschraubung

- PU-Hartschaum (λ ca. 0,030 W/mK) fest aufgeschäumt; Mantel, Deckel: 80 mm, Boden: 70 mm; mit PVC-Mantelverkleidung und PVC-Deckel

- 1 Wärmedämmung Faservlies, 100 mm für Reinigungsflansch, Ø 180 mm, mit PVC-Deckel

- 1 Wärmedämmung Faservlies, 100 mm für Anschluss E-Heizstab, Ø 80 mm, mit PVC-Deckel
- 1 Bodenblech, 3 mm, mit 3 Stellfüssen
- 1 Glattrohr-Wärmeübertrager, 1", 1,2 m2, Anschlüsse auf einer Höhe
- 1 Glattrohr-Wärmeübertrager, 1", 0,8 m2

- 2 eingeschweißte Tauchhülsen, Innen-Ø 12 mm, Länge 100 mm

Die Details und Masse entnehmen Sie bitte der beiliegenden Zeichnung. Die Wärmeübertrager sind in der Zeichnung nur beispielhaft dargestellt.

Wir bitten um Kalkulation des Verkaufspreises für eine Produktionsmenge von 1.000 Stck./Jahr, 10.000 Stck./Jahr, 50.000 Stck./Jahr und 100.000 Stck./Jahr.

Für Fragen stehen wir gerne zur Verfügung.

Vielen Dank!

[1] Das Forschungsprojekt "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen", Akronym "KoST", wird aufgrund eines Beschlusses des deutschen Bundestages vom Bundesministerium für Wirtschaft und Energie (BMWi) über den Projektträger Jülich (PtJ) unter dem Förderkennzeichen 0325860A gefördert sowie von den beteiligten Industriepartnern mitfinanziert.

Mit freundlichen Grüßen Best regards

Dipl.-Ing. Stephan Bachmann

Universität Stuttgart

University of Stuttgart

Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung (IGTE)

Institute for Building Energetics, Thermotechnology and Energy Storage (IGTE)

Pfaffenwaldring 10

70569 Stuttgart

Germany

Tel: +49 711685-63203; Fax: +49 711685-63242 phone: +49 711685-63203; fax: +49 711685-63242 Mail: stephan.bachmann@igte.uni-stuttgart.de; http://www.igte.uni-stuttgart.de

Anhang E: Anforderung Mikrozirkulationsbremse

KoST Mikrozirkulationsbremse										
Kriterium	Anforderung	Wunsch (W) Forderung (F)	Bemerkung							
Technische Anforderungen										
max. Betriebstemperatur	90 °C, kurzzeitig 120 °C	F								
	95 °C T Triphysessoreite 100 °C	F								
	T _{max} Heizungsseite 110 °C									
	Tmax Solar Aqua-System 140 °C									
	kurzzeitig 140° / dauerhaft 100°C									
max. Betriebsdruck	6 bar	F								
	6 bar	W/F	In kleinen Stuckzahlen 6 bar, größere Mengen in 3 bar							
	10 bar									
zulässige Wärmeträger	Warmwasser/Heizungswasser/Solarfluid (Propylenglykol)	F								
	Öffnungsdruck	-	Für welchen Höhenunterschied wird die Zirkulationsbremse entwickelt?							
	Heizungswasser VDI 2035 weitestrehend Diffusionsdicht gegen Sauerstoff im Bereich der	F								
	Verschraubung	F								
	Trinkwasser und Heizungswasser									
Geoignet für Anschlüsse	proKühl Sole, Tytocor L +LS, Clariant Antitrogen SOL & SOL HAT									
	Speicheranschlüsse									
	Muss in Speicheranschluss eingebaut werden können									
	Trinkwasserzulassung in gesamter EU									
	Verschwindend geringer Druckverlust									
Montage- und Bedienungsfreundlichkeit										
Louionalgenouria	Steckbar oder als Einlegeteil	W	r ur Neuaniagen und für bestehende Systeme							
	Sitz innerhalb flachdichtender Verschraubungen	w	Rückwärtskompatibilität von Bestandsbauteilen zur							
	Keine Notwendigkeit radialer Ordientierung innerhalb eines Anschlusses	W	Geringer Herstellungsaufwand Einbauumgebung							
	Einbauumgebung in Rohrende mit marktüblicher Rohrendbearbeitung	r	Falls gewüscht Zeichnugen heutiger Einbauumgebung							
	(angedrückte Dichtflächen, gerollte Außengewinde)	F	anfragen							
	Stecksystem oder max eine Verschraubung	W								
	Einbaulage eindeutig (falscher Einbau konstruktiv ausschließen)									
	Schnell tauschbar									
Wirtschaftlichkeit/Kosten										
	Wirksamkeit bewegt nachgewiesen sich im Bereich von 30° nach unten geneigten Speicheranschlüssen	F	vgl. ISFH Bericht "Wärmeverluste durch Einrohrzirkulation" S.37, F. Kliem, j.Steinweg, G. Rockendorf							
	Als fluidführendes diffusionsdichtes! Spritzgussteil je nach Baugröße 0,50- 1,50 /Stück bei Jahresmengen von 1000-5000 Stück, Werkzeugkosten < 3000 € //sröße									
	Preisgefüge einer handelsüblichen Rückschlagklappe									
	maximal 1,5€ Herstellkosten									
Qualität, Langlebigkeit,										
	Trinkwasserzulassung	F								
	Technologie und vor allem Wirksamkeit skalierbar für									
	Anschlussdimension 1/2" - 2"	W								
	möglichst geringe Druckverluste bei Durchflüssen von 800 (3/4"), 2000 (1 1/2") und 8000 (2") L/h	w								
	Handwerk durchführbar	w								
	Funktionsfähigkeit >20 Bertiebsjahre	F								
	warrungstrei Lehensdauer 20. Jahre									
	Materialverräglichkeit mit allen in der Trinkwasser- und Heizungs- Installation verwendeten Materialien									
	Auch geeignet für Edelstahlspeicher									
	Unempfindlich gegen Druckspitzen beim Schließen von Armaturen /									
	Siedevernalten Kollektoren Unempfindlich gegen Kalkablagerungen und Schlamm aus der									
	Heizungsanlage		keine Reweglichen Teile							
Sonstiges										
	keine Betriebsgeräusche									
	wartungsfrei									
	Preisnachlass an Entwicklung beteiligter Unternehmen									

Anhang F: Analyse der Montageanleitungen

KoST: Prüfung der Anleitungen

19. September 2017 (Pablo Theissen) – Aktualisiert: 20. Mai 2019 (Robert Hämmerl)

Gliederung

1	Star	nd der Forschung	1
	1.1	Rechtliche Grundlage	1
	1.2	Normative Vorgaben	2
	1.3	Lesbarkeitsindex	3
2	Met	hodik	3
	2.1	Geprüfte Anleitungen	3
	2.2	Prüfung nach DIN EN 82079-1	4
	2.3	Wiener Sachtext Formel und subjektives Textverständlichkeit	4
	2.4	Empirische Bewertung	5
3	Erge	ebnisse	5
	3.1	Hersteller 1	5
	3.2	Hersteller 2	7
	3.3	Hersteller 3	9
4	Zusa	ammenfassung	10
5	Able	eitung einer Standard-Anleitung	12
6	Liter	raturverzeichnis	13
7	Anh	lang	13
	7.1	Liste der untersuchten Anleitungen	13
	7.2	Textausschnitte für Lesbarkeitsindex-Analyse	13
	7.3	Detailauswertung DIN EN 82079-1 Anhang B	14
	7.4	Detailauswertung DIN EN 82079-1 Anhang C	16

1 Stand der Forschung

Das folgende Kapitel gibt einen Überblick über den Stand der Technik und Forschung im Bereich der Betriebsanleitung und gibt einen Einblick in relevante gesetzliche und normative Grundlagen. Es existieren in der deutschen Sprache keine eindeutigen Begriffe für verschiedene Arten der Anleitungen. Verschiedene Gesetze, Normen und Richtlinien sprechen von »Gebrauchsanleitung«, »Bedienungsanleitung«, »Betriebsanleitung«, »Anleitung« oder »Benutzerhandbuch«. Im Folgenden werden die Begriffe verwendet, wie sie auch in der entsprechenden Quelle verwendet werden. Fokus dieser Prüfung sind – unabhängig vom verwendeten Begriff – Anleitungen, die zur Montage und Inbetriebnahme von Solaranlagen eingesetzt werden.

1.1 Rechtliche Grundlage

Nach dem Produktsicherheitsgesetz (ProdSG; Deutscher Bundestag 2011) ist die Gebrauchsanleitung Bestandteil des Produkts. Wird »eine Gebrauchsanleitung nicht, nicht richtig, nicht vollständig, nicht in der vorgeschriebenen Weise oder nicht rechtzeitig mit[ge]liefert« (Deutscher Bundestag 2011), ist dies ein Sachmangel. Die genauen Anforderungen an Gebrauchsanleitungen werden nicht weiter erläutert.

Heizungsanlagen fallen unter die Bauproduktenverordnung (Europäische Union 2011), welche jedoch keine genauen Angaben zur Anforderung an Gebrauchs- oder Montageanleitungen stellt. Es wird deshalb die Maschinenrichtlinie 2006/42/EG (Europäische Union 2006) herangezogen, welche in den Abschnitten 1.7.4.1 und 1.7.4.2 einen guten Überblick über Anforderungen an Bedienungsanleitungen. Eine vollständige Liste der Anforderungen kann der Richtlinie entnommen werden, im Folgenden eine Auswahl an Anforderungen:

- »Die Betriebsanleitung muss in einer oder mehreren Amtssprachen der Gemeinschaft abgefasst sein.
 [...]

Fraunhofer IAO

KoST: Prüfung der Anleitungen

Jede Betriebsanleitung muss erforderlichenfalls folgende Mindestangaben enthalten:

- Firmenname und vollständige Anschrift des Herstellers [...]
- Bezeichnung der Maschine entsprechend der Angabe auf der Maschine selbst [...]
- die EG-Konformitätserklärung [...]
- die f
 ür Verwendung, Wartung und Instandsetzung der Maschine und zur
 Überpr
 üfung ihres ordnungs gem
 äßen Funktionierens erforderlichen Zeichnungen, Schaltpl
 äne, Beschreibungen und Erl
 äuterungen
 eine Beschreibungen und Erl
 äuterungen
- eine Beschreibung der bestimmungsgemäßen Verwendung der Maschine
- Warnhinweise in Bezug auf Fehlanwendungen der Maschine, zu denen es erfahrungsgemäß kommen kann;
- Anleitungen zur Montage, zum Aufbau und zum Anschluss der Maschine, einschließlich der Zeichnungen, Schaltpläne und der Befestigungen, [...]
- Hinweise zur Inbetriebnahme und zum Betrieb der Maschine [...]
- bei Unfällen oder Störungen erforderliches Vorgehen [...]
- Beschreibung der vom Benutzer durchzuführenden Einrichtungs- und Wartungsarbeiten sowie der zu treffenden vorbeugenden Wartungsmaßnahmen
- Anweisungen zum sicheren Einrichten und Warten einschließlich der dabei zu treffenden Schutzmaßnahmen « (Europäische Union 2006)

1.2 Normative Vorgaben

Neben den rechtlichen Vorgaben existiert auch eine Norm zur Erstellung von Gebrauchsanleitungen. In der DIN EN 82079-1, bzw. VDE 0039-1, gibt es eine große Überschneidung der Anforderungen an Gebrauchsanleitungen mit der oben zitierten Maschinenrichtlinie 2006/42/EG. Im Gegensatz zur Richtlinie werden viele Anforderungen jedoch detaillierter formuliert und teilweise erweitert. Zusätzlich zur Einhaltung der Konformität werden Anforderungen an die Benutzbarkeit und die Effektivität der Kommunikation gestellt.

Die Norm stellt zwei Checklisten bereit, anhand derer Gebrauchsanleitungen geprüft werden können (DIN EN 82079-1):

- Anhang B: Checkliste für Konformität und Kommentare
- Anhang C: Checkliste f
 ür die Effektivit
 ät der Kommunikation

Während Anhang B objektiv messbare Kriterien enthält, z.B. ob die Anleitung Angaben über die Leistungsdaten beinhaltet, werden in Anhang C überwiegend subjektive Bewertungen vom Prüfer erfasst, z.B. ob »Wörter und Sätze nicht kompliziert und übermäßig anspruchsvoll« sind. Abbildung 1 gibt einen Einblick in die Prüf-Tabelle aus Anhang C.

Ferner gibt Anhang A an, auf welche Art und Weise Gebrauchsanleitungen mithilfe dieser Norm bewertet werden sollen. Angeboten wird entweder die Untersuchung durch einen »entsprechend qualifizierten Experten« am Schreibtisch oder durch »Empirische Bewertung möglicher Nutzer und/oder Zielgruppe(n)«. (DIN EN 82079-1)

	Themen, die anzusprechen sind	Relevanter Abschnitt	Bewertung	Kommentare
7	Anwendung grafischer Symbole	6.1.8, 6.2.1, 6.2.5, 6.4		
7.1	Ausreichende Größe, um bei einem beabsichtigten Betrachtungsabstand verständlich zu sein			
7.2	Anwendung genormter Symbole, wo möglich (in genormten Farben)			
7.3	Genormten Gestaltungsprinzipien folgen (z. B. zu Form und Farbe) für jedes neue Symbol			

Abbildung 1: Ausschnitt aus DIN EN 82079-1, Anhang C

Fraunhofer IAO

KoST: Prüfung der Anleitungen

1.3 Lesbarkeitsindex

Die Lesbarkeit eines Textes kann anhand verschiedener Formeln ermittelt werden. Während für verschiedene Textarten und verschiedene Sprachen eine Vielzahl unterschiedlicher Lesbarkeitsformeln existieren, leiten die meisten den Lesbarkeitsindex aus einem Zusammenhang zwischen Satz- und Wortlänge sowie die Silbenzahl pro Wort her. (Kercher 2013) Diese objektiv messbaren Werte scheinen zwar keinen direkten Zusammenhang zur Schwierigkeit eines Textes zu haben, doch zeigt sich, dass viele andere Kriterien mit diesen Textparametern verknüpft sind (Wichter 2006).

Bei allen Lesbarkeitsformeln ist zu beachten, dass eine ausreichende Menge Text zur Verfügung gestellt wird, da es sonst leicht zu fehlerhaften Bewertungen kommen kann, wenn der ausgewählte Satz ein überdurchschnittlich langes Wort enthält (Reck 2016).

1.3.1 Flesh-Reading-Ease

Eine verbreitete Methode ist der Flesch-Reading-Ease (Flesh 1948) der auf Basis der durchschnittlichen Satzund Wortlänge einen Index zwischen 0 (extrem schwer verständlich) und 100 (für 11-jährige Schüler verständlich) dies Lesbarkeit eines Textes ermittelt. Da die deutsche Sprache längere Wörter bei vergleichbarer Satzlänge wie die englische Sprache hat, ist eine modifizierte Version für den deutschen Sprachraum nötig und wurde von Amstad (1978) entwickelt.

1.3.2 Wiener Sachtextformeln

Eine weitere verbreitete Methode sind die Wiener Sachtextformeln (Bamberger, Vanecek 1984). Diese Formeln berechnen anhand verschiedener Parameter die Lesbarkeit eines Textes und geben auf einer Skala von 4 bis 15 die Schulstufe an, ab der ein Text verstanden werden kann. Das obere Ende der Skala von 15 sollte eher als eine Angabe der Schwierigkeit als eine tatsächliche Schulstufe angesehen werden. Es existieren vier Formeln, die mit einer unterschiedlichen Zahl Parameter befüllt werden. Die erste Wiener Sachtextformel (WSTF) mit allen Parametern lautet wie folgt:

WSTF1 = 0,1935 · MS + 0,1672 · SL + 0,1297 · IW - 0,0327 · ES - 0,875

- MS Prozentanteil der Wörter mit drei oder mehr Silben
- SL mittlere Satzlänge (Anzahl Wörter)
- IW Prozentanteil der Wörter mit mehr als sechs Buchstaben
- ES Prozentanteil der einsilbigen Wörter

2 Methodik

Im Folgenden werden zunächst die Rahmenbedingungen der Prüfung angegeben und anschließend die Methodik des Prüfvorgangs erläutert.

2.1 Geprüfte Anleitungen

Es wurden diverse Anleitungen für die verschiedenen Solar-Heizungssysteme von den im Projekt beteiligten Herstellern zur Verfügung gestellt. Diese umfassen jeweils einen kompletten Satz Anleitungen für jeden Teil der Anlage, sofern der Hersteller diese selbst vertreibt oder produziert. Eine Liste der untersuchten Anleitungen ist in Anhang 7.1 (S. 13) zu finden.

2.1.1 Solaranlagen

Es wurden Anleitungen der im Projekt beteiligten Hersteller *Hersteller* 1[†], *Hersteller* 2 sowie *Hersteller* 3 vollständig nach allen hier vorgestellten Kriterien geprüft. Die Anleitungen lagen in digitaler Form als PDF-Dokument vor.

Fraunhofer IAO

KoST: Prüfung der Anleitungen

¹ Auf Wunsch der Hersteller anonymisiert.

2.1.2 Referenzanleitungen

Zusätzlich wurden Anleitungen einer Solaranlage des Herstellers Viessmann Werke GmbH & Co. KG untersucht.

Als Referenzen für fachfremde Anleitungen, die auch von Laien aus verstanden werden müssen, werden Anleitungen für einen komplexen Lego Technic Bausatz sowie für eine Ikea Pantryküche in den Benchmark mit aufgenommen. Es werden im Folgenden keine detaillierten Vergleiche mit diesen Anleitungen vorgenommen, sie dienten während der Auswertung jedoch als Vergleich und zur Inspiration.

2.2 Prüfung nach DIN EN 82079-1

Da die Inhalte der Abschnitte 1.7.4.1 und 1.7.4.2 der Maschinenrichtlinie 2006/42/EG weitestgehend auch in der Norm DIN EN 82079-1 abgebildet sind, wird von einer gesonderten Prüfung anhand der Richtlinie abgesehen.

Die Einhaltung der Norm DIN EN 82079-1 wird, wie in deren Anhang A, Abschnitt A.2.1 beschrieben, geprüft. Im Kern bedeutet dies, dass die Kontrollen anhand der Checklisten in Anhang B und C durchgeführt werden. Die Anforderung, dass »[d]as eigentliche Produkt (und vorzugsweise die Verpackung) [...] dem Forscher [...] zur Verfügung gestellt werden [muss], nicht nur die Anleitungsmedien« (DIN EN 82079-1) ist aufgrund der Größe und Komplexität der Anlage nicht realisierbar. Es wird jedoch auf Erfahrung aus der Baustellenbegehung im Rahmen des KoST-Projekts zurückgegriffen.

Ein vollständige Übersicht dieser Kriterien ist in Anhang 7.3 und 7.4 (S. 14ff) zu finden.

Die einzelnen Punkte der Checkliste werden mit den Kategorien »erfüllt«, »teilweise erfüllt«, »nicht erfüllt« und »nicht zutreffend« bewertet. Insbesondere bei einer Einstufung als »teilweise erfüllt« wird die Bewertung kommentiert. Einige Bewertungspunkte treffen auf Heizungs- und Solaranlagen nicht zu (etwa persönliche Schutzausrüstung während des Betriebs) und werden deshalb als »nicht zutreffend« bewertet.

Falls vorhandene Informationen in den Anleitungen als »nicht erfüllt« kategorisiert wurden, kann dies ein Indiz dafür sein, dass diese Information nicht ausreichend einfach zu finden ist.

2.3 Wiener Sachtext Formel und subjektives Textverständlichkeit

Zur Berechnung des Lesbarkeitsindexes wird die Wiener Sachtextformel angewendet. Während diverse Formeln zur Verfügung stehen, bietet sich die Wiener Sachtextformel an, da sie explizit für die deutsche Sprache geschaffen wurde, mehrfach positiv auf Validität geprüft wurde und ein anschauliches Ergebnis liefert.

Die Prüfung wird mit einem Skript in der Programmiersprache Python automatisiert. Das Skript bereinigt zunächst den zu prüfenden Text, zerlegt die Wörter mithilfe des Python-Moduls *pyphen* in einzelne Silben und emittelt daraufhin die nötigen Textparameter für die Wiener Sachtextformel. Der Programmcode kann unter [2] eingesehen werden. Ein Onlinetool zur Textbewertung stellt die Webseite schreiblabor.com unter [3] zur Verfügung.

Zur Einordnung dieser Methode einige Werte der Wiener Sachtextformel für bekannte oder nachvollziehbare Texte:
Alle meine Entchen: 4,33
O Tannenbaum: 5,94
Spiegel Online Artikel zu Prinz William: 8,36
Bild Artikel zu Prinz William: 9,72
Spiegel Online Artikel zu Nordkorea: 12,7
Bild Artikel zu Nordkorea: 14,0
Erste drei Absätze dieses Abschnitts: 13,1
Wikipedia, Einleitung Artikel »Solarkollektor«: 15,8

Da die vorliegenden Montageanleitungen

im Allgemeinen nur wenig Fließtext beinhalten, wurden aus verschiedenen Teilen der Anleitungen Texte zusammenkopiert. Es wurden bei allen Herstellern Ausschnitte aus der Anleitung für den Kollektor bzw. die

2 https://github.com/pablotheissen/wstf 3 http://www.schreiblabor.com/textanalys

Fraunhofer IAO

KoST: Prüfung der Anleitungen

Dachhaken entnommen. In Summe haben die einzelnen Texte zwischen 1500 und 1700 Zeichen, die mithilfe der Wiener Sachtextformel geprüft wurden. Die vollständigen Prüftexte sind in Anhang 7.2 abgedruckt.

Die Textverständlichkeit wurde außerdem durch eine subjektive Bewertung durch den Prüfer validiert. Der Bildungshintergrund des Prüfers ist ein universitärer Abschluss in Maschinenbau und Ergonomie, mit grundlegenden Kenntnissen im Bereich von Heizungs- und Solaranlagen.

2.4 Empirische Bewertung

Im Rahmen der Baustellenbegehung wurden halbstrukturierte Interviews mit Heizungsbauern geführt sowie Beobachtungen bei der Nutzung der Anleitungen geführt. Es wurde untersucht, welche Aspekte einer Anleitung für die Nutzer besonders wichtig sind und wo Probleme bei der Nutzung auftreten.

3 Ergebnisse

Insgesamt weisen alle Anleitungen eine hohe Qualität auf und erfüllen die meisten Anforderungen der DIN EN 82079-1 Norm. Da sich die Anleitungen im Detail jedoch stark unterscheiden und Stärken und Schwächen in unterschiedlichen Bereichen aufweisen, wird die Darstellung der Ergebnisse für jeden Hersteller separat vorgenommen.

3.1 Hersteller 1

Die Montageanleitungen von *Hersteller 1* sind alle einheitlich gestaltet und weisen eine gemeinsame Designsprache auf. Die Gliederung der Anleitung beginnt mit allgemeinen Hinweisen (Informationen zur Anleitung, Sicherheit, Produktbeschreibung) und geht dann chronologisch die Lebensdauer des Produkts durch (Lieferumfang, Montage, Wartung, Entsorgung). Die Anleitungen besitzen viel Weißraum (unbedruckter Teil einer Seite), die Seiten werden von großen Bildern dominiert, die meisten Texte sind in Listen-Form formuliert. Insgesamt vermittelt die Anleitung einen sehr technischen Eindruck.

3.1.1 Checkliste für Konformität und Kommentare

Die meisten Punkte der Checkliste werden erfüllt. Sowohl die Versionsnummer, als auch das Ausgabedatum sind direkt auf der Titelseite zu finden. Auf der Rückseite der Anleitung sind die Anschrift, Internetadresse und Telefonnummer vermerkt, allerdings wäre es empfehlenswert eine Telefonnummer deutlich als Service-Hotline zu kennzeichnen.

Die Anleitung enthält keine Informationen über Emission von Lärm und ähnlichem. Es fehlen Informationen zur erwarteten Lebensdauer. Für die Entsorgung des Produkts wird auf den Fachhandwerker sowie auf eine »ordnungsgemäße Entsorgung« verwiesen, jedoch keine näheren Informationen gegeben. Es werden allgemeine Informationen zur Sicherheit gegeben; spezielle Informationen zu Sicherheitsvorkehrungen bei der Wartung finden sich jedoch keine. Insbesondere wenn während einer Wartung nur das Kapitel »Wartung« geöffnet wird, können die Hinweise leicht übersehen werden.

Es fehlen Informationen über Wartungsarbeiten, die auch durch einen (versierten) Laien durchgeführt werden können, bzw. die Information, dass sämtliche Wartungsarbeiten durch Fachhandwerker durchgeführt werden müssen.

Der Umfang der Anleitungen ist sehr groß. Der zur Verfügung gestellte Satz Anleitungen (Überblick, Solarstation, Solarregler, Frischwasserregler, Wasserspeicher, Kollektor, Dachhaken, Wellschlauch) beinhaltet 344 Seiten, unterteilt in acht Anleitungen.

3.1.2 Checkliste für die Effektivität der Kommunikation

Die Kommunikation mit dem Nutzer sowie die Gestaltung der Anleitung sind sehr gut und erfüllen annähernd jeden Punkt der Checkliste.

Die Gliederung der Anleitung ist schlüssig. Checklisten zur abschließenden Kontrolle sind nach den Montageschritten zu finden.

Fraunhofer IAO

KoST: Prüfung der Anleitungen

Die Gebrauchsanleitungen sind mit einer kurzen Recherche nicht digital zu finden, auch in der gedruckten Fassung finden sich keine Informationen über unterstützende Medien.

In den Grafiken werden keine Farben verwendet; die Bauteile, die in den einzelnen Schritten zum Einsatz kommen, sind jedoch in einem dunkleren Grauton gehalten. Der Mangel an Farben gepaart mit den hochwertigen Zeichnungen vermittelt einen insgesamt schlichten aber sehr professionellen, technischen Eindruck.

Verständnisprobleme können durch eine nicht erwartungskonforme Beschriftung der Bilder erfolgen, bei der Teile-Nummern nicht von links nach rechts und von oben nach unten durchnummeriert sind, vgl. Abbildung 2. In dieser Grafik fehlt außerdem ein Hinweis für die Orientierung der Horizontalschiene (3), die augenscheinlich auch um 180° gedreht verbaut werden könnte. Die zwei Detailansichten in dieser Grafik sind ohne erläuternden Text ebenfalls nicht selbsterklärend, da eine Referenz (z.B. ein Ausschnitt der Horizontalschiene) fehlt, in welche Richtung der Schlitz zeigen soll.

Abbildung 2 Missverständliche Grafik durch eine umgekehrte Reihenfolge der Nummerierung und nicht eindeutigen Detailansichten Ouelle: *Hersteller 1*

Gut gelöst ist die Verdeutlichung von Geräuschen, die bei korrektem Einbau auftreten werden, siehe Abbildung 3.

Abbildung 3 Gut gelöste Verdeutlichung von Geräuschen Quelle: Hersteller 1

3.1.3 Textverständlichkeit

Eine Untersuchung nach der Wiener Sachtextformel ergibt einen Wert von 12,9.

MS Prozentanteil der Wörter mit drei o- der mehr Silben	SL mittlere Satzlänge (Anzahl Wörter)	IW Prozentanteil der Wörter mit mehr als sechs Buchstaben	ES Prozentanteil der einsilbigen Wörter	WSTF
35,7	14,2	47,4	49,8	12,9

Fraunhofer IAO

KoST: Prüfung der Anleitungen

Da das Fachhandwerk auch mit längeren Wörtern aus dem Kontext Heizungs- und Solaranlagen vertraut ist, ist dies ein akzeptables Ergebnis. An den Endnutzer gerichtete Texte sollten möglicherweise jedoch vereinfacht werden. Beim Lesen fallen die vielen kurzen Sätze in Listenform auf, die zusammen mit den kurzen Zeilenlängen gut gelesen und auch überflogen werden können.

3.2 Hersteller 2

Bei der Betrachtung der verschiedenen Anleitungen fällt auf, dass die verschiedenen Anleitungen sehr unterschiedlich gestaltet und aufgebaut sind. Die Grafiken reichen von einfachen Zeichnungen, über schattierte Renderings bis hin zu Fotos der Bauteile. Durch die vielen orangefarbenen Zeichnungen wirkt die Anleitung insgesamt freundlicher aber weniger technisch, teilweise sogar verspielt. Ähnlich wie bei Ikea Anleitungen werden benötigte Werkzeuge und beiliegende Bauteile grafisch aufgelistet.

Die Gliederung wirkt chaotisch (Einleitung > Sicherheit > Garantie > Demontage/Entsorgung > Betrieb > Wartung > Technische Daten > Montage), da sie keiner erkennbaren Reihenfolge folgt und deshalb stets das Inhaltsverzeichnis bemüht werden muss.

3.2.1 Checkliste für Konformität und Kommentare

Die meisten Punkte der Checkliste werden erfüllt. Datum und Versionsnummer sind nicht auf allen Anleitungen vermerkt und teilweise nur sehr klein abgedruckt. Die Kontaktdaten des Herstellers sind vollständig, es ist jedoch keine Service-Hotline angegeben.

Die Anleitung enthält keine Informationen über Emission von Lärm und ähnlichem. Es sind keine Informationen über Gefahren für bestimmte Gruppen zu finden (z.B. Kinder).

Es fehlen Informationen zur Entsorgung von Abfallprodukten, lediglich wird auf »lokale Vorschriften« verwiesen.

Nicht alle Anleitungen beinhalten Informationen über die Wartung des Produkts. Ferner fehlen Informationen über Wartungsarbeiten, die auch durch einen (versierten) Laien durchgeführt werden können, bzw. die Information, dass sämtliche Wartungsarbeiten durch Fachhandwerker durchgeführt werden müssen.

Der Umfang der Anleitungen ist groß. Der zur Verfügung gestellte Satz Anleitungen (Kollektor+Befestigung, Wellrohr, Speicher, Speichervorbau, Regelung) beinhaltet 148 Seiten, unterteilt in fünf Anleitungen.

3.2.2 Checkliste für die Effektivität der Kommunikation

Die Anleitungen differenzieren nicht ausreichend zwischen Informationen für Laien und für das Fachhandwerk. Die nicht erwartungskonforme Gliederung sowie die nicht uniforme Art der Abbildungen wurde bereits im einleitenden Text zu Kapitel 3.2 erläutert.

Die sehr langen Zeilen erschweren die Lesbarkeit der Texte. Es sollte eine Richtlänge von etwa 80 Zeichen eingehalten werden. Die Anleitung des Solarreglers des gleichen Herstellers löst dieses Problem durch einen zweispaltigen Satz. Hier wird die Verständlichkeit jedoch dadurch verringert, dass viele Grafiken und Tabellen über den Spaltenrand hinausragen und eine Zuordnung erst nach Lesen der benachbarten Textabschnitte möglich wird. Hervorzuheben ist jedoch die Anleitung für die Montage des Kollektors, die im Hauptteil fast vollständig ohne Text auskommt. Ob dies in der Praxis zu mehr oder weniger Missverständnisse entstehen übersteigt jedoch den Rahmen dieser Prüfung.

Verständnis-Probleme entstehen möglicherweise bei Montageoptionen, die abhängig von den Rahmenbedingungen durchgeführt werden müssen (vgl. Abbildung 5). Hier muss entweder eine klarere Bildsprache gefunden werden, die grafisch eine Wenn-Dann-Beziehung abbildet, oder ein erläuternder Text eingefügt werden.

Einige in der Anleitung verwendete Symbole sind nicht selbsterklärend und werfen zunächst mehr Rätsel auf als sie lösen (vgl. Abbildung 4). Zwar werden die Symbole in der Anleitung erklärt – wie es auch in der Norm verlangt wird – dennoch sollten die Symbole weitestgehend selbsterklärend sein. Eine Unterscheidung der Symbole »Vorsicht« (Warndreieck *mit* Ausrufezeichen; Personen- und Materialschäden) und »Achtung« (Warndreieck *ohne* Ausrufezeichen; Materialschäden) fällt während der Nutzung schwer.

Fraunhofer IAO

KoST: Prüfung der Anleitungen

Abbildung 5 Montageoptionen und Bedingungen, wann welche Option zu verwenden ist, werden nicht ausreichend differenziert

Quelle: Hersteller 2

Abbildung 4 Nicht selbsterklärende Symbole (der zwinkernde Smiley steht für »Tipp, nützliches Montagezubehör / Werkzeug«)

Quelle: Hersteller 2

3.2.3 Textverständlichkeit

Eine Untersuchung nach der Wiener Sachtextformel ergibt einen Wert von 16,8.

MS Prozentanteil der Wörter mit drei o- der mehr Silben	SL mittlere Satzlänge (Anzahl Wörter)	IW Prozentanteil der Wörter mit mehr als sechs Buchstaben	ES Prozentanteil der einsilbigen Wörter	WSTF
52,3	7,64	61,7	34,6	16,8

Auffällig ist der extrem hohe Wert von 16,8, der aus den vielen langen und vielsilbigen Wörtern entsteht. Hierbei muss jedoch beachtet werden, dass der Montageteil der Anleitung de facto keinen Text enthält, sondern fast ausschließlich den Aufbau durch Grafiken vermittelt. Es liegt in der Natur der Sache, dass der einleitende Text komplexere Wörter beinhaltet als der eigentliche Montageprozess. Dennoch sollte darauf geachtet werden, dass auch dieser Teil verständlich bleibt, insbesondere falls die Option besteht, dass auch der Endkunde diese Anleitung liest.

Fraunhofer IAO

KoST: Prüfung der Anleitungen

3.3 Hersteller 3

Die Anleitungen des Herstellers *Hersteller 3* sind stark strukturiert. Zu jedem Bild existiert viel erläuternder Text. Viele Tabellen sind im Fließtext untergebracht und nicht gesammelt an einer Stelle abgedruckt. Störend fällt die Mischung aus Zeichnungen, Renderings und s/w-Fotos auf. Während die Zeichnungen sehr gut zu verstehen sind, überladen die Renderings und Fotos den Leser mit Informationen selbst beim Lesen an einem hochwertigen Monitor. Es lag kein gedrucktes Exemplar der Anleitungen vor, um die subjektive Informationsmenge in der gleichen Form kontrollieren zu können, wie es auch der Nutzer empfinden würde. Positiv ist die Trennung verschiedener Montageoptionen in eigene Kapitel (Aufdachmontage, Flachdachmontage, ...), anstatt alle Optionen in einem Kapitel »Montage« unterzubringen.

3.3.1 Checkliste für Konformität und Kommentare

Die meisten Punkte der Checkliste werden erfüllt. Eine Versionsnummer ist nicht erkennbar, das Datum ist nicht prominent platziert und nur in der Fußzeile sehr klein abgedruckt.

Die Anleitung enthält keine Informationen über Emission von Lärm und ähnlichem. Es sind keine Informationen über Gefahren für bestimmte Gruppen zu finden (z.B. Kinder).

In der Anleitung wird auf eine korrekte Entsorgung hingewiesen sowie wo und wie dies geschehen muss. Zusätzlich wird eine kostenlose Entsorgung bei Rücksendung der Produkte hingewiesen.

Der Umfang der Anleitungen ist groß. Die zur Verfügung gestellten Anleitungen (Kollektor und Unterbau, Wasserspeicher, Regler für Installateure, Regler für Kunden) haben einen Umfang von 208 Seiten, aufgeteilt auf drei Anleitungen für das Handwerk und eine für den Kunden.

3.3.2 Checkliste für die Effektivität der Kommunikation

Die Anleitungen weisen eine sehr gute Gliederung auf, die einerseits chronologisch, wie bei der Montage benötigt, aufgebaut ist, und anderseits auf Hauptkapitel-Ebene verschiedene Anwendungsfälle differenziert und den Suchaufwand für den Handwerker dadurch verringert.

Die Anleitung ist in zwei Spalten gesetzt, Grafiken und Tabellen im Fließtext befinden sich ausschließlich innerhalb der betreffenden Spalte. Größere Grafiken und Tabellen sind stets am Seiten-Anfang oder -Ende positioniert, sodass sie den Textfluss nicht stören. Sämtliche Grafiken sind durchnummeriert, die Tabellen nicht.

Die unterschiedliche Qualität der Zeichnungen, Renderings und Bilder wurde bereits im einleitenden Text zu Kapitel 3.3 bemängelt. Eine ausschließliche Verwendung von Grafiken würde das Verständnis erleichtern. Eine zusätzliche Darstellung mit Bildern und Videos würde als digitale Ergänzung hilfreich sein, da dann auch Farben beim Verstehen der Bilder helfen. Manche Zeichnungen sind nicht im Vektorformat und werden deshalb unscharf oder verpixelt dargestellt.

Gut gelöst ist die Übersichtlichkeit der Zeichnungen, bei der direkt am Bild Hinweise und Informationen angeboten werden. Konsistent eingesetzte weiße Zahlen auf schwarzem Grund geben die Reihenfolge von Schritten an (vgl. Abbildung 6). Eine Erläuterung dieser Nomenklatur wird in der Anleitung jedoch nicht häufig genug wiederholt.

Ungeschickt ist die Nutzung desselben Warndreieck-Symbols für drei verschiedene Hinweis-Arten (Gefahr, Warnung, Vorsicht).

Fraunhofer IAO

KoST: Prüfung der Anleitungen

Das Beispiel bezieht sich auf Standard-Kollektoren. Bei Typ Integral maximal 5 Kollektoren möglich!

1 – 29 Montagereihenfolge

Abbildung 6 Gute Darstellung der Bearbeitungsreihenfolge

3.3.3 Textverständlichkeit

Eine Untersuchung nach der Wiener Sachtextformel ergibt einen Wert von 12,5.

MS Prozentanteil der Wörter mit drei o- der mehr Silben	SL mittlere Satzlänge (Anzahl Wörter)	IW Prozentanteil der Wörter mit mehr als sechs Buchstaben	ES Prozentanteil der einsilbigen Wörter	WSTF
34,0	12,3	48,8	47,8	12,5

Die Anleitungen des Herstellers *Hersteller 3* besitzen mit 12,5 den niedrigsten Wert der untersuchten Anleitungen und bieten damit auch die einfachste Textverständlichkeit. Dies hat sich auch beim Durchlesen durch den Prüfer bestätigt. Die Sätze sind kurz und einfach gehalten und leicht verständlich. Das Kapitel »Einfach-Bedienung« (gerichtet an Endnutzer) der Bedienungsanleitung des Reglers ist in auffällig leichterer Sprache geschrieben und noch besser verständlich als andere Teile der Anleitung. Eine Einstufung mit der Wiener Sachtextformel auf einen Wert von 9,9 bestätigt diesen Eindruck.

4 Zusammenfassung

Insgesamt ist die Erfüllung der DIN EN 82079-1 gut, insbesondere des formalen Anhangs B. Mängel bestehen hier hauptsächlich bei Informationen zu Version und Datum der Anleitung sowie Hinweise auf technischen Support. Angaben zu Emissionen sowie eine Erläuterung von Messverfahren fehlen ebenfalls bei allen Herstellern und sollten nachgebessert werden.

Informationen zum Auspacken der Produkte fehlen, würden jedoch nur wenig Mehrwert bieten und den Umfang der Anleitungen weiter erhöhen. Wichtig wäre jedoch eine genauere Unterscheidung zwischen Fachhandwerk und Laien; insbesondere der Hinweis auf eventuell mögliche Wartungsarbeiten durch Laien fehlt. Zumindest eine Auflistung von Fällen, bei denen das Fachhandwerk informiert werden sollte, wäre hilfreich.

Auffallend positiv ist die Qualität der Zeichnungen, die zwar teilweise Detail-Mängel aufweisen, insgesamt jedoch alle gut verständlich gestaltet sind. Die Verwendung von Renderings oder Fotos erschwert das schnelle Begreifen eines Bildes im Allgemeinen jedoch.

Fraunhofer IAO

KoST: Prüfung der Anleitungen

Hilfreich für Handwerker, die nicht sehr regelmäßig diese Systeme verbauen, sind Checklisten, wie sie von *Hersteller 1* angeboten werden. Diese sollten jedoch am Kapitelanfang positioniert werden oder herausnehmbar als Gedächtnisstütze sein.

Für Handwerker, die regelmäßig diese Systeme aufbauen, müssten die Anleitungen stärker aufs Nachschlagen einzelner Informationen ausgerichtet sein. Dies umfasst unter anderem selbsterklärende Symbole, Texte, die direkt den Grafiken zugeordnet werden können (und andersherum), sowie eine Gliederung, die sinnvoll aufgebaut ist und bereits in den Überschriften genau den Inhalt des Abschnitts beschreibt. Weiterhin sind Grafiken wichtig, die für sich allein selbsterklärend sind, ohne vorhergehenden Text oder andere Grafiken studiert zu haben.

Es fehlt außerdem eine Liste am Kapitelanfang mit Arbeitsschritten, die sinnvoll am Boden durchgeführt werden können, um die Arbeitszeit auf dem Dach zu minimieren. Gepaart mit Erkenntnissen der Baustellenbegehung ist die Minimierung der »Dachzeit« ein wichtiges Kriterium für den Handwerker.

Fraunhofer IAO

KoST: Prüfung der Anleitungen

5 Ableitung einer Standard-Anleitung

- Aufteilung der Anleitung in einzelne Hefte
 - Beliebig, wie es sinnvoll f
 ür die vom Hersteller vermarkteten Produkte ist
 - Formatierung o Zweispaltig
 - Grafiken nur in einer Spalte oder am Seitenanfang-/ende
 - Einhaltung der Regeln aus DIN EN 82079-1 zur Formatierung (z.B. Schrift- und Symbolgröße,
 - etc.)
- Gliederung

0

- Gliederung
- Allgemeine Informationen (Gültigkeit, Zielgruppe)
 - Hinweise
 - Zur Anleitung (Symbole, evtl. Online-Angebot, etc.)
 - Sicherheit
 - Rechte- und Pflichten
- Produktbeschreibung
 - Technische Daten
 Aufbauwarianten
 - Aufbauvarianten
 - Bestimmungsgemäße Verwendung
- Lieferumfang und benötigte Werkzeuge
- Montageoption A
 - Benötigtes Werkzeug
 - Checkliste
 Vorbereitungsschritte
 - Vorbereitungsschritte
- Montageoption B
 Montageoption ...
- (evtl. Montage eines zugehörigen anderen Produkts)
- (evtl. Anschluss)
- Inbetriebnahme
- Betrieb
- Wartung
- Außerbetriebnahme und Entsorgung
- Anhang
- Grafiken
 - o Durchnummeriert, Verweis im Text auf Grafik, falls Text nicht direkt an Grafik hängt
 - Sinnvolle Reihenfolge der Beschriftung im Bild (oben–unten, links-rechts)
 - Keine Fotos oder Renderings
- Text
 - Textschwierigkeit vermindern: Kurze Sätze, wo sinnvoll einfache Wörter Achtung: Nicht Fachwörter vereinfachen, die dem Fachhandwerk bereits bekannt sind!!
 - Einfachere Textgestaltung bei Textabschnitten mit der Zielgruppe Laie
 - o Bei zweispaltigem Satz Silbentrennung aktivieren
 - o Knappe Formulierung von Arbeitsschritten in nummerierten Listen in aktiv-Form
 - o Einheitlicher Sprachgebrauch innerhalb der Solarthermie-Branche
- Sonstiges
 - o Tabellen durchnummeriert
 - o Einigung auf gemeinsame Symbole
 - Ein Symbol = eine Bedeutung
 - Kurzanleitungen wo möglich auf Produkten anbringen (Aufkleber, Fähnchen, Beschriftung von Kabeln, ...)
 - o Informationen nicht ausschließlich durch Farbe vermitteln

Fraunhofer IAO

KoST: Prüfung der Anleitungen

6 Literaturverzeichnis

AMSTAD, T.: Wie verständlich sind unsere Zeitungen? : Studenten-Schreib-Service, 1978 (Abhandlung: Philosophische Fakultät I. Zürich. 1977)

BAMBERGER, Richard ; VANECEK, Erich: Lesen-Verstehen-Lernen-Schreiben : Die Schwierigkeitsstufen von Texten in deutscher Sprache. Wien : Jugend und Volk, 1984

DEUTSCHER BUNDESTAG: Produktsicherheitsgesetz (idF v. vom 8. 11. 2011). URL https://www.gesetze-im-internet.de/prodsg_2011/ProdSG.pdf

DIN EN 82079-1. 2013-06. Erstellen von Gebrauchsanleitungen – Gliederung, Inhalt und Darstellung – Teil 1: Allgemeine Grundsätze und ausführliche Anforderungen

EUROPÄISCHE UNION: Richtlinie 2006/42/EG des europäischen Parlaments und des Rates vom 17. Mai 2006 über Maschinen und zur Änderung der Richtlinie 95/16/EG (in Kraft getr. am 2006). URL http://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=uriserv:OJ.L_.2006.157.01.0024.01.DEU

EUROPÄISCHE UNION: Verordnung (EU) Nr. 305/2011 des Europäischen Parlaments und des Rates vom 9. März 2011 zur Festlegung harmonisierter Bedingungen für die Vermarktung von Bauprodukten und zur Aufhebung der Richtlinie 89/106/EWG des Rates Text von Bedeutung für den EWR (idF v. 2011) (2011). URL http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:088:0005:0043:DE:PDF

FLESH, Rudolph: A new readability yardstick. In: The Journal of applied psychology 32 (1948), Nr. 3, S. 221–233

KERCHER, Jan: Verstehen und Verständlichkeit von Politikersprache. Wiesbaden : Springer Fachmedien Wiesbaden, 2013

RECK, Robert: Kultur und Sprache im Geschäftsbericht : Gestaltung von Textinformationen. 1. Aufl. 2016, 2016 (Rechnungswesen und Unternehmensüberwachung)

WICHTER, Sigurd (Hrsg.): Wissenstransfer - Erfolgskontrolle und Rückmeldungen aus der Praxis. Frankfurt am Main, Wien u.a. : Lang, 2006 (Transferwissenschaften 5)

7 Anhang

7.1 Liste der untersuchten Anleitungen

Aus Gründen der Anonymität hier nicht abgedruckt.

HERSTELLER

HERSTELLER 1	8 Anleitungen
HERSTELLER 2	5 Anleitungen
HERSTELLER 3	5 Anleitungen

7.2 Textausschnitte für Lesbarkeitsindex-Analyse

Aus Gründen der Anonymität hier nicht abgedruckt.

Fraunhofer IAO

KoST: Prüfung der Anleitungen

	7.3	Detailauswertung	DIN	EN 82079-1	Anhang	В
--	-----	------------------	-----	------------	--------	---

	Prüfpunkte nach DIN EN 82079-1	Hersteller 2		Hersteller 1		Hersteller 3	Hersteller 3	
1	Identifizierung	Erfüllung	Bemerkungen	Erfüllung	Bemerkungen	Erfüllung	Bemerkungen	
1.1	Markenzeichen und Typkennzeichnung	vollständig		vollständig		vollständig		
1.2	Nr. des Models, Version, Typ, Untergruppe	vollständig		vollständig		vollständig		
1.3	Verfallsdatum	nicht zutref- fend		nicht zutref-		nicht zutref-		
1.4	Aktualitäts-Kontrolle / zum Beispiel Datum der Veröffentlichung des Handbuchs ein- schließlich der Produktmodifikationen	nicht voll- ständig	Datum nicht auf allen Anleitungen, Versions- nummer sehr klein	vollständig		nicht voll- ständig	Datum versteckt, Versionsnummer nicht erkennbar	
1.5	Anbieter und Zulieferer spezieller Werk- zeuge, Material usw. sowie technische Hilfe			nicht zutref- fend		nicht erfüllt		
1.6	Kontaktdaten des Anbieters / der Servicennid Agentur		vollständig, aber nicht als Service-Hotline de- klariert	nicht voll- ständig	vollständig, aber nicht als Service-Hotline de- klariert	vollständig		
1.7	Zertifizierungsreferenzen vollständig vo		vollständig		vollständig			
1.8	Anforderungen bestimmter Produktnormen	vollständig		vollständig		vollständig		
2	Technische Spezifikation des Produkts und seine Resteefährdungen							
2.1	Funktionen und Anwendungsbereich	vollständig		vollständig		vollständig		
2.2	Sichere und korrekte Nutzung; hauptsächli- che Restgefährdungen, allgemeine Warnun- gen über das Produkt oder die Nutzung	vollständig		vollständig		vollständig		
2.3	Abmessungen - Masse - Kapazität	vollständig		vollständig		vollständig		
2.4	Chemische Zusammensetzung	vollständig		nicht zutref- fend		nicht zutref- fend		
2.5	Leistungsdaten	vollständig		vollständig		vollständig		
2.6	Angaben zur Energie-, Gas-, Wasserversor- gung und anderen Verbrauchsmaterialien (z. B. Reinigungsmittel, Schmiermittel)	vollständig		vollständig		vollständig		
2.7	Energieverbrauch und angewandte Messver- fabren	nicht erfüllt		vollständig		nicht erfüllt		
2.8	Emission von Lärm, Abwasser usw., mit ange- wendeten Messverfahren	nicht erfüllt		nicht erfüllt		nicht erfüllt		
2.9	Erwartete Lebensdauer des Produkts und be- absichtigte Beseitigung	vollständig		nicht erfüllt		nicht erfüllt		
2.10	Informationen zur persönlichen Schutzaus- rüctung (z. B. Bekleidung)	nicht erfüllt		nicht erfüllt		nicht erfüllt		
2.11	Informationen über Gefahren für besonders schutzbedürftige Gruppen (z. B. potenzielle Allergien oder Stroboskop-Effekte)	nicht erfüllt		vollständig		nicht erfüllt		
3	Vorbereitung des Produkts für die Nutzung							
3.1	Sicherheitsvorkehrungen vor der Installation	vollständig		vollständig		vollständig		
3.2	Auspacken	nicht erfüllt		nicht erfüllt		nicht erfüllt		
3.3	Sichere Entsorgung der Verpackung	vollständig		vollständig		nicht erfüllt		
3.4	Installation und Montage (z. B. spezielle Werkzeuge, Platz für Instandhaltung und Re- paratur)	vollständig		vollständig		vollständig		
3.5	Lagerung und Schutz während der Intervalle der normalen Nutzung	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
3.6	Wiederverpacken zur Vermeidung von Scha- den beim Transport	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
3.7	Informationen über Vorgänge, die nur von Fachgersonal auszuführen sind. Trennung dieser Informationen von Gebrauchsanlei- tungen für Laien. Verständlichkeit der Ge- brauchsanleitung für Fachpersonal	nicht voll- ständig	Trennung nicht in allen Anleitungen	vollständig		vollständig		
4	Betrieb der Produkte							

KoST: Prüfung der Anleitungen

	Prüfpunkte nach DIN EN 82079-1		Hersteller 2		Hersteller 1		Hersteller 3	
4.0.1	Struktur von grundlagenden Vorgän-	volletändig		vollständig		volletändig		
4.0.1	gen/Funktionen zu anspruchsvollen Vorgän- gen/Funktionen	vonstandig		vonstanting		voiscandig		
4.0.2	Sinnvolle Trennung zwischen Ausgangspro- dukt und optionalen Modulen	vollständig		vollständig		vollständig		
4.1	Grundlegende Funktionen		vollständig, aber nicht vollständige Prüfung möglich		vollständig, aber nicht vollständige Prüfung möglich		vollständig, aber nicht vollständige Prüfung möglich	
4.1.1	 vollständig f ür den korrekten bestimmungs- gem	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.1.2	 vollständig f ür den sicheren bestimmungs- gem ä ßen Gebrauch 	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.1.3	vollständig für die vernünftigerweise vor- hersehbare Fehlanwendung fend			nicht zutref- fend		nicht zutref- fend		
4.1.4	 Konformität mit der Minimumliste der rele- vanten Produktnorm(en) 	nicht zutref- fend						
4.2	Sekundäre Funktionen (Details identisch mit 2.1 oben)		vollständig, aber nicht vollständige Prüfung möglich		vollständig, aber nicht vollständige Prüfung möglich		vollständig, aber nicht vollständige Prüfung möglich	
4.2.1	 vollständig f ür den korrekten bestimmungs- gem	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.2.2	 vollständig f ür den sicheren bestimmungs- gem ä ßen Gebrauch 	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.2.3	 vollständig f ür die vern ünftigerweise vor- hersehbare Fehlanwendung 	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.2.4	Konformität mit der Minimumliste der rele- vanten Produktnorm(en)	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.3	Optionale Module und Extras	vollständig		vollständig		vollständig		
4.4	Persönliche Schutzausrüstung	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.5	Kurzanleitungen	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft wer- den	
4.5.1	- durch Merkzettel, Aufkleber oder Zeichen nicht zutref- fend			nicht zutref- fend		nicht zutref- fend		
4.5.2	- durch Verweis auf das Handbuch usw.	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
4.6	Entsorgung von Abfallprodukten	nicht voll- ständig	nur Verweis auf "lokale Vorschriften"	vollständig		vollständig		
5	Vom Nutzer benötigte Informationen							
5.1	Erklärung der sichtbaren und hörbaren Sig- nale	vollständig		vollständig		vollständig		
5.2	Unterschiede zwischen Merkmalen eines normalen und fehlerhaften/gefährlichen Be- triebs	vollständig		vollständig		vollständig		
5.3	Hinweise zur Fehlersuche (z. B. in Form von höufig gestellten Fragen und Verfahren zur Fehlererkennung) - verständlich für Verbrau- cher und unter gebührender Berücksichti- gung der Sicherheit	vollständig		vollständig		vollständig		
6	Wartung des Produkts							
6.1	Sicherheitsvorkehrungen (z. B. persönliche Schutzausrüstung, spezielle Werkzeuge)	nicht erfüllt		nicht erfüllt		vollständig		
6.2	Instandhaltung des Produkts durch Laien	nicht voll-	Keine Info ob mög- lich/nötig	nicht zutref-	Laien bekommen an-	vollständig	Nur durch Fach-	
6.3	Instandhaltung des Produkts durch Fach- kräfte	nicht voll- ständig	Nicht in allen Anleitun- gen	vollständig	acce Panerong	vollständig		
6.4	Kontrollen der Sicherheit/Alterung während der Instandhaltung	nicht erfüllt	\$1	vollständig		vollständig		
7	Kritische Sicherheits- und Gesundheitsinfor-							
7.1	Warnhinweise							
7.1.1	- korrekte Orte	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft wer- den	
7.1.1.1	- auf dem Produkt und/oder	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft wer- den	

KoST: Prüfung der Anleitungen

	D." for all the search DINI FM 020200 4	11		Hersteller 1		Harstellar 2		
	Prutpunkte nach DIN EN 82079-1	Hersteller Z		Hersteller 1		Hersteller 3		
7.1.1.2	 auf der Verpackung und/oder in 	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft wer- den	
7.1.1.3	- Gebrauchsanleitungen	vollständig		vollständig		vollständig		
7.1.2	- falls relevant, sichtbar am Verkaufsort	nicht zutref- fend	ht zutref-Kann nicht geprüft n nd werden fe		Kann nicht geprüft wer- den	nicht zutref- fend	Kann nicht geprüft werden	
7.1.3	 korrekte Anwendung von Begriffen 	vollständig		vollständig		vollständig		
7.1.4	- korrekter Gebrauch der Signalwörter	vollständig		vollständig		vollständig		
7.1.5	- Gebrauch einfacher/standardisierter Sätze	nicht voll- ständig		vollständig		vollständig		
7.1.6	- Dauerhaftigkeit der Warnungen	vollständig		vollständig		vollständig		
7.1.7	- Konformität mit Anforderungen in relevan- ten Produktnorm(en)	vollständig		vollständig		vollständig		
7.2	Sicherheitssignale	vollständig		vollständig		vollständig		
7.3	Informationen über Restrisiken	vollständig		vollständig		vollständig		
7.4	Sichere Entsorgung des Produkts am Ende seiner Nutzungsdauer	vollständig		vollständig		vollständig		
7.5	Umweltauswirkungen bei der Produktnut- nicht erfüllt zung			nicht erfüllt		nicht erfüllt		
8	Konsistenz in der Informationsgestaltung und mit dem gesamten angebotenen »Pro- dukt«							
8.1	Integrierte Gestaltung des Produkts und der Gebrauchsanleitung - keine Kompensation konstruktiver Mängel	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft wer- den	
8.2	Konsistente Terminologie auf dem Produkt selbst sowie auf der Verpackung, den Begleit- materialien, den Websites und Marketing- medien	vollständig		vollständig		vollständig		
8.3	Struktur von Text und Grafiken	vollständig		vollständig		vollständig		
8.3.1	- Struktur folgt Kommunikationsprinzipien	vollständig		vollständig		vollständig		
8.3.2	- Anwendung aussagekräftiger Überschriften	vollständig		vollständig		vollständig		
8.3.3	 unnötige Informationen ausklammern, um eine Informationsüberlastung zu vermeiden (z. B. Werbung, umfangreiche Wiederholun- gen, zu viele Dokumente) 	nicht voll- ständig	Sehr großer Umfang	vollständig		nicht voll- ständig	Sehr großer Umfang	
8.4	Anbringungsort(e) und Darstellung der Ge- brauchsanleitung	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft werden	nicht zutref- fend	Kann ohne Produkt nicht geprüft wer- den	
8.5	Nummerierte Seiten und/oder Absätze mit Inhaltsverzeichnis und/oder Index entspre- chend der Länge und Komplexität des Texts. Anwendung von Schlagwörtern	vollständig		vollständig		vollständig		

7.4 Detailauswertung DIN EN 82079-1 Anhang C

	Prüfpunkte nach DIN EN 82079-1	Hersteller 2		Hersteller 1		Hersteller 3	
1	Zielgruppen Erfüllung Bemerkungen		Erfüllung	Bemerkungen	Erfüllung	Bemerkungen	
1.1	Zielgruppe/n spezifiziert	nicht voll- ständig		vollständig		vollständig	
1.2	Gebrauchsanleitungen adäquat präsentiert für die Zielgruppe/n	vollständig		vollständig		vollständig	
2	Ort und Medium						

Fraunhofer IAO

KoST: Prüfung der Anleitungen

	Devisionarida wash DIN EN 92070-1	Howfollor 2		Horstollor 1		Hamiallar 2		
		Heisteller 2		Hersteller I		Heisteller 3	neisteller 5	
2.1	Platzierung auf dem Produkt, der Verpackung oder in Begleitmedien erfüllt Anforderungen an Verfügbarkeit und Dauerhaftigkeit	nicht zutref- fend	Kann nicht geprüft werden	nicht zutref- fend	Kann nicht geprüft wer- den	nicht zutref- fend	Kann nicht geprüft werden	
2.2	Warnfunktion ist entsprechend der Nutzer- bedürfnisse (Bedeutung/Sichtweite usw.)	vollständig		vollständig		vollständig		
2.3	Platz in Ordnung oder Reihenfolge in Bezug auf andere Informationen folgen Kommuni- kationsprinzipien	nicht voll- ständig	Reihenfolge teilweise unklar	vollständig	Chrnologisch sortiert; Verweis auf Checkliste im Text sinnvoll	nicht voll- ständig	Außerbetriebnahme fehlt teilweise	
2.4	Gruppiert unter entsprechenden Überschrif- ten und gefunden im Index	vollständig		vollständig		vollständig		
2.5	Gebrauchsanleitungen und unterstützende Medien, die den Nutzern auf der Website des Anbieters mit einem breiten Spektrum indivi- dueller Zugangsbedürfnisse zur Verfügung stehen	vollständig		vollständig		vollständig	Online Version der Anleitung auffindbar	
3	Leserlichkeit von Text							
3.1	Klare Schrift und angemessene Schriftgröße (abhängig vom Leseabstand)	vollständig		vollständig		vollständig		
3.2	Linienlänge und Linienabstand	nicht voll- ständig	Zeilen zu lang	vollständig		vollständig		
3.3	Kontrast zu Hintergrund	vollständig		vollständig		vollständig		
3.4	Effektiver Gebrauch von weißem Raum	vollständig		vollständig		vollständig		
3.5	Dauerhaftigkeit der Leserlichkeit des Texts auf dem Produkt (oder auf der Verpackung)	nicht zutref- fend	Kann nicht geprüft werden	nicht zutref- fend	Kann nicht geprüft wer- den	nicht zutref- fend	Kann nicht geprüft werden	
4	Betrieb der Produkte							
4.1	Text/Gebrauch von Wörtern							
4.1.1	- Wörter und Sätze nicht kompliziert oder übermäßig anspruchsvoll	vollständig	Wenig/kein Text wo möglich	vollständig		vollständig		
4.1.2	- kurze Sätze	vollständig		vollständig		vollständig		
4.1.3	- ein Satz - eine Handlungsanweisung. Nicht zu viele Informationen in einem Satz	vollständig		vollständig		vollständig		
4.1.4	- im Aktiv formuliert und ausdrückliche Hand- lungsanleitungen	nicht voll- ständig	Teilweise viel Substan- tivierung	vollständig		nicht voll- ständig	Passiv in einleiten- den Texten, über- wiegend Aktiv in Lis- ten	
4.2	Angewendete Begriffe für Merkmale und Handlungen des Nutzer							
4.2.1	wenn möglich, für den Verbraucher geläu- fige Begriffe benutzen	vollständig	Fachpersonal	vollständig		vollständig		
4.2.2	technische Merkmale und Begriffe gut er- klärt	vollständig		vollständig		vollständig		
4.2.3	- konsistente Anwendung von Begriffen							
4.3	Kommunikationsprinzipien							
4.3.1	Förderung von schnellen Reaktionen (z. B. simple und einfache Informationen für den Notfall)							
4.3.2	- Festlegung eines Lemprozesses für kom- plexe Funktionen	vollständig		vollständig		vollständig		
4.3.3	- Beantwortung der Fragen WO? WER? WAS? WANN? WIE? WARUM	vollständig		vollständig		vollständig		
5	Mehrere Sprachuarianten							
5.1	Eindeutige Unterscheidung/Identifizierung der Sprachfassungen	nicht erfor- derlich		nicht erfor- derlich		nicht erfor- derlich		
5.2	Jede Sprachversion überprüft von einem Muttersprachler, auf Verständlichkeit und Nichtvollständigsein sprachlicher Fehler	nicht zutref- fend		nicht zutref- fend		nicht zutref- fend		
6	Illustrationen							

KoST: Prüfung der Anleitungen

	Prüfpunkte nach DIN EN 82079-1	Hersteller 2		Hersteller 1		Hersteller 3	
6.1	Eindeutigkeit von illustrierten Merkmalen und Handlungen bei einem beabsichtigten Betrachtungsabstand (Eindeutigkeit; selbst- erklärend ohne Text, wann immer möglich)	nicht voll- ständig	Bei Kollektor: ja Bei Rest: nein	vollständig		nicht voll- ständig	Grafiken teilweise verpixelt; Fotos in s/w schwer zu er- kennen
6.2	Ausreichende Anzahl von Illustrationen für je- den, um eindeutige und spezifische Informa- tionen zur Verfügung zu stellen	vollständig		vollständig		vollständig	
6.3	illustrationen unterstützt durch eindeutige und hilfreiche Bildtexte	nicht erfüllt	Versteckte Informatio- nen durch Beschriftung mit Nummern anstatt mit Text	vollständig		vollständig	
6.4	zwischen Text und illustrationen ständig richt komme zwischen Text und illustrationen ständig richt Bei zweispalti- gem Textsatz über- kreuzen Bilder die Spalten häufig		vollständig	Keine Nummerierung, aber eindeutige Zuord- nung von Text zu Bild	vollständig	Bilder nummeriert, aber keine Verweise genutzt	
6.5	Kann dicht am entsprechenden Text gezeigt werden wenn notwendig	vollständig	rollständig			vollständig	
6.6	Wiederholte Illustrationen, wenn notwendig	vollständig		vollständig		vollständig	
7	Anwendung grafischer Symbole						
7.1	Ausreichende Größe, um bei einem beabsich- tigten Betrachtungsabstand verständlich zu sein	vollständig		vollständig		vollständig	
7.2	An wendung genormter Symbole, wo möglich (in genormten Farben)	vollständig		nicht voll- ständig	Warndreieck in Gelb/Schwarz	nicht voll- ständig	Ausrufezeichen in Kreis
7.3	Genommen Gestaltungsprinzipien folgen (z. vollständig B. zu Form und Farbe) für jedes neue Symbol		vollständig		nicht voll- ständig	Gleiches Symbol für viele Verschiedene Hinweise	
7.4	Jedes Symbol eindeutig im Text erläutern	vollständig		vollständig		nicht voll- ständig	Erläutert, aber nicht unter Kapitel "Hin- weise"
7.5	Dauerhaftigkeit von Symbolen auf dem Pro- dukt (oder auf der Verpackung)	nicht zutref- fend	Kann nicht geprüft werden	nicht zutref- fend	Kann nicht geprüft wer- den	nicht zutref- fend	Kann nicht geprüft werden
8	Tabellen, konzeptionelle Diagramme und Flussdiagramme						
8.1	Gegebenenfalls zur Verfügung gestellt und angeordnet	vollständig		vollständig		vollständig	
8.2	Eindeutig dargelegt und informativ	vollständig		vollständig		vollständig	
8.3	Wiederholte Tabellen, Diagramme und Fluss- diagramme, wenn nötig	vollständig		vollständig		vollständig	
9	Anwendung von Farben						
9.1	Funktional	vollständig		nicht zutref-		nicht erfüllt	s/w
9.2	Klar und einfach unterscheidbar	vollständig		nicht zutref-		nicht zutref-	
9.3	Konsistent	vollständig		nicht zutref-		nicht zutref-	
10	Erklärung von sichtbaren und hörbaren Sig-			Terror		Teno	
10.1	Deutlichkeit der Information den Nutzern zur			vollständig	Geräusche umschrie-		
10.2	Vertugung stellen Lidhter, Geräusche, Textanzeigen (oder an- dere Angaben), die möglicherweise durch das Produkt in jeder Phase gegeben werden, wer- den an jedem relevanten Punkt im Text erläu- tert.	vollständig		vollständig	ben dick	vollständig	
11	Gebrauchsanleitungen mittels elektroni- scher Medien						
11.1	Angeben, ob zur Ergänzung oder anstelle ei- ner Gebrauchsanleitung in Text	nicht erfüllt		nicht zutref- fend		nicht erfüllt	
11.2	ner Gebrauchsanleitung in Text Der Struktur und Sprache im Text folgend, au- ßer sie sind ungeeignet für das Medium						
11.3	Angebot von mehrsprachigen Optionen und						
12	Dauerhaftigkeit						

KoST: Prüfung der Anleitungen

	Prüfpunkte nach DIN EN 82079-1	Hersteller 2			Hersteller 1		Hersteller 3		
12.1	Diejenigen Beschreibungen der Gebrauchs- anleitung, die zum Nachschlagen oder für neue Nutzer aufzubewahren sind, sollten in Medien sein, die angernessene Vorkehrun- gen bieten gegen Verlust oder Alterung in der zu erwartenden (normalen) Lebenzeit des Produkts und von ihrer Entsorgung abschre- cken.	nicht zutref- fend	Kann nich werden	t geprüft	nicht zutref- fend	Kann nicht geprüft wer- den	nicht zutref- fend	Kann nicht werden	geprüft

KoST: Prüfung der Anleitungen

Anhang G: Bericht Montagebegleitung Paradigma

FRAUNHOFER-INSTITUT FÜR ARBEITSWIRTSCHAFT UND ORGANISATION IAO

MONTAGEBEGLEITUNG "PARADIGMA" Bericht

Dipl.-Ing. Robert Hämmerl (21.08.2019) auf der Basis der Berichte von Pablo Theissen (22.05.2017 und 02.08.2017)

Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart.

Projekt: KoST "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen"

Stuttgart, 21.08.2019

Inhaltsverzeichnis

1		Allae	meine Informationen	.3
2		Grun	dsätzliches	.3
3		Heizs	vstem	.3
	3.1 3. 3. 3. 3. 3.	Fris .1.1 .1.2 .1.3 .1.4 .1.5	- chwasserspeicher Aqua EXPRESSO III Transport Aufstellen Montieren. Installation Hydraulik Installation Elektrik.	.3 .4 .4 .5
4 5 6 7		Mont Zeita Ergor Zusar	age Solarkollektoren ufwand 10mische Beurteilung 11menfassung	.5 .7 .8
	7.1 7.2	Fee Em	dback der Monteure pfehlungen und Fazit	.9 .9

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

1 Allgemeine Informationen

Bei dem Objekt handelte es sich um ein privates 2-stöckiges 1-Familen-Haus. Die alte Gasheizung wird ausgebaut und durch das Model "Paradigma AquaSolar Plasma" ersetzt. Zusätzlich werden zwei Röhrenkollektoren (AQUA PLASMA 19/50) mit je 4,5m² Aperturfläche installiert.

2 Grundsätzliches

Die Anlage wurde von erfahrenen Heizungsbauern installiert, welche sowohl mit Anlagen dieses Herstellers vertraut waren. Die Anlieferung aller Teile erfolgte in Vorwoche mit einem LKW. Dabei wird auch eine Vollständigkeitsprüfung der Kisten durchgeführt. Kleinteile werden allerdings nicht auf Vollständigkeit geprüft. Die Anleitungen werden als sehr gut bezeichnet. Als teilweise problematisch angesehen wird, dass Änderungen an Bauteilen sind nicht immer direkt in Anleitungen umgesetzt sind. Ein konkretes Beispiel konnte allerdings vor Ort nicht genannt bzw. gezeigt werden. Teilweise Wunsch auf seltenere größere Änderungen (dann mit Schulungen) anstatt jede Anlage immer minimal zu verändern.

3 Heizsystem

Bei der Heizungsinstallation wirkte sich der geräumige Heizungskeller positiv auf die Installationsarbeiten aus, eine Herausforderung stellten die geschweißten Kunststoffrohre der bisherigen Heizung dar.

Eine Herausforderung bei der Inställation des Speichers bestand in der korrekten Zuordnung von Temperaturfühlern, Schläuchen und Kabeln. Insbesondere beim Einbau der gleichartigen Fühler kamen Fragen auf, die durch die Anleitung nicht auf Anhieb zweifelsfrei geklärt werden konnten. So ist das einzige Unterscheidungsmerkmal der Fühler, wie tief diese in den Speicher eingeführt werden können; die Anleitung lässt jedoch vermuten, dass die Fühler auch anhand von linkem und rechtem Loch im Speicher identifiziert werden können. Sämtliche vom Hersteller vormontierten Teile, etwa die Verkabelung der Regelung, wurden von den Handwerkern positiv kommentiert. Analog zu den elektrischen Steckverbindungen kam der Wunsch nach Schnellspannern für hydraulische Verbindungen auf.

Nach der Montage des Frischwasserspeichers sind nicht mehr alle Anschlüsse erreichbar, dadurch werden Fehlerkorrekturen problematisch.

Die Halterung des Brenners hat viele Einbaupositionen und entsprechend viele Löcher. Es war unklar, welche eingesetzt werden müssen.

Der Energy Vario hat drei Abwasser-Leitungen die abgeführt werden müssen, ein Y-Stück/Siphon ist wünschenswert, um nur ein Schlauch ins Abwasser zu führen.

3.1 Frischwasserspeicher Aqua EXPRESSO III

3.1.1 Transport

- Ein Fuß muss mit Schraubenschlüssel langwierig abgeschraubt werden, um Gerät besser auf elektrische Sackkarre aufzuladen.
- Ein Kunststofffuß wird mit der Hand abgeschlagen, um durch die Kellertür zu gelangen. (Kunststofffuß steht über Speicherumfang über, siehe Abbildung 1).
- Anschlussrohre bleiben in Türrahmen hängen: Speicher muss auf Sackkarre gedreht werden.
- Letzter Meter wird Speicher über Boden gedrückt/gezogen, dann justiert.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

Abbildung 1: Transport des Frischwasserspeichers und überstehender Fuß

3.1.2 Aufstellen

- Beim ersten Aufstellen war Platzverbrauch nicht eindeutig, Speicher wurde später erneut leicht verdreht/verschoben. → Draufsicht mit allen Anbauten und Platzbedarf zur Verfügung stellen oder Schablone auf Verpackungskarton im Maßstab 1:1.
- Schwierigkeit durch Platzmangel, insb. beim Anbringen der Speicherdämmung.
 Höhe des Speichers ist fix vorgegeben (370mm Boden bis Mitte Rohr Frischwasserstation), aber nicht
- Hone des Speichers ist fix vorgegeben (37 umm Boden bis Mitte Kohr Frischwasserstation), aber nic auf dem Speicher vermerkt
- Füße können nicht mehr justiert werden, nachdem Dämmung angebracht wurde.

3.1.3 Montieren

- Stopfen (z.B. von Frischwasserstation) teilweise nur mit viel Kraft und Schraubendreher zu entfernen.
 Stopfen für elektrischen Heizstab nicht standardmäßig vormontiert (Installateur kannte korrekte Funktion für dieses Rohr nicht).
- Speicherdämmung wäre als flexibler Mantel leichter zu montieren, insb. in engen Kellern.
- Zuordnung Temperaturfühler problematisch: Fühler sehen alle identisch aus, Kabel werden vom Installateur mit Kugelschreiber beschriftet.
- Oben/unten von Ummantelung nicht eindeutig ohne sie auseinanderzufalten.
- Klemmschiene f
 ür seitliche Temperaturf
 ühler sehr fummelig und schwer zu montieren. Installateur hat F
 ühler in Schiene reingeklemmt, nicht geklebt.

3.1.4 Installation Hydraulik

 Seitliche Schläuche können vertauscht werden (wenn auch unwahrscheinlich bei erfahrenen Installateuren) → Beschriftung auf Speicher identisch zu Beschriftung auf Schlauch (bereits vorhanden) und Beschriftung auf Energy Vario.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

- Schnellspanner f
 ür Hydraulik gew
 ünscht.
- Qualität Hahn-Entlüfter unzureichend, wird schnell undicht; Installateur verbaut anderen Hahn.

3.1.5 Installation Elektrik

 Ausschließlich Steckverbindungen gewünscht (z.B. für Daten Bus), sämtliche Schrauberei an Kabeln führt zu längeren Denkpausen.

4 Montage Solarkollektoren

Das Dach war über einen Balkon mittels Leitern zu erreichen und mit einem Neigungswinkel von ca. 25° relativ flach. Kleinteile konnten durch das Dach hindurch gereicht werden, die Kollektoren wurden über einen Kran auf das Dach gehoben. Durch diese Rahmenbedingungen war kein Gerüst nötig, während der Dacharbeiten war der Handwerker durch einen am Dachsparren befestigten Klettergurt gesichert (siehe Abbildung 2). Eine Herausforderung bei den Dacharbeiten waren die alten, zerbrechlichen Dachziegel. Um zukünftige Schäden an den Ziegel zu vermeiden, wurden unter den Dacharbeiten Blech-"Ziegel" eingesetzt, welche weniger Empfindlich für Druck-Belastungen sind.

Abbildung 2: Montage auf dem Dach mit Klettergurt

Während vom Hersteller die Installation auf dem Dach zu zweit empfohlen wird, wurde in diesem Fall alle Dacharbeiten von einer Person allein durchgeführt. Die zweite Person unterstützte durch Anreichen von Bauteilen und Werkzeug (siehe Abbildung 3). Es wurde kritisiert, dass mehr Werkzeug auf dem Dach benötigt wird, als eine Person alleine tragen und während der Arbeiten sicher verstauen kann.

Für das hier verbaute Kollektormodell ist zur Befestigung auf dem Dach eine Unterkonstruktion aus Horizontal- und Vertikalschienen notwendig. Diese ist laut Hersteller auf dem Boden vorzumontieren und anschließend an den Dachhaken zu befestigen. Da in diesem Fall der Kran nur für kurze Zeit zur Verfügung stand, wurde die Unterkonstruktion direkt auf dem Dach zusammengebaut. Die große Zahl an Einzelteilen für die Unterkonstruktion (ca. 30 Einzelteile + 20 vormontierte Schrauben) stellte deshalb eine besondere Herausforderung dar. Insbesondere die zahlreichen Schraubverbindungen, die laut Anleitung mit verschiedenen Drehmomenten angezogen werden müssen, belasteten den Handwerker. Neben der offensichtlichen Anstrengung, etwa 40 Schrauben manuell anzuziehen, kam auch die Befürchtung auf, einige Schrauben vergessen zu haben.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

Abbildung 3: Zugang auf das Dach

In der nachfolgenden Aufzählung sind die einzelnen Montageschritte kommentiert:

- Positionierung: Absprache mit Kunden, wo sich die Kollektoren befinden sollen. Anleitung wird an dieser Stelle nicht genau befolgt, solange der Kollektor aufs Dach passt.
- Vorbereitung Multikopf: Bereits auf Boden vormontiert.
- Platzbedarf ermitteln: Wie es passt. Dachziegel werden angehoben um Position der Dachsparren zu ermitteln.
- Position und Abstände Dachhaken ermitteln: Maßstab grobes ausmessen, genaue Positionen auf Ziegel einritzen.
- Dachhaken montieren und ausrichten: Muttern können mit Schraubenschlüssel nicht erreicht werden, wenn Langlöcher komplett ausgeschöpft wurden.
- Vertikal-/Horizontalschienen montieren: Unklar welche Seite Richtung Dach/Richtung Kollektor zeigt. Anleitung wenig aufschlussreich. Gesamte Unterkonstruktion aus Vertikal- und Horizontalschienen wird für unnötig empfunden. Wieso nicht Kollektoren direkt auf Haken? Justierung sehr langwieriger Prozess, insb. bei mehreren Kollektoren nebeneinander. Vom Boden kein Unterschied erkennbar, ob perfekt justiert oder nur grob ausgerichtet. An manchen Stellen müssen gleichzeitig mehrere Teile gehalten und geschraubt werden, dabei restliche Teile/Werkzeug vom Herunterfallen vom Dach geschützt werden. Verschieben der Schienen in Haken zur Justierung sehr kompliziert, da sich Schienen verhaken und gar nicht mehr bewegen lassen. Wunsch: weniger Teile!
- Montage Kollektor AQUA PLASMA 19/50: Wegen sehr umfangreichen Vorarbeiten bei Dachhaken Installation des Kollektors mit Kran problemlos und schnell. Keine Auffälligkeiten. Anleitung zur Verkabelung des Sensors an Wellschlauch-Set hervorragend, auch auf Kellerseite gewünscht, nicht nur auf Kollektorseite.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

5 Zeitaufwand

Insgesamt waren bis zu drei Monteure vor Ort tätig.

Tag 1 – Drei Monteure

•	Ausbau alte Heizung	1 Stunde
•	Transport alte/neue Heizung	0,5 Stunden

•	Mon	itie	ren			-		1,5	Stu	ınde	n

- Installation Hydraulik/Elektrik
 1 Stunde
- Rohre verlegen und anschließen * Restlicher Tag

Tag 2 – Zwei Monteure

 Anschluss an Heizungskreis und Inbetriebnahme Heizkreislauf^{*)} Voller Tag

Tag 3 – Zwei Monteure

•	Installation Dachhaken und Unterbau	4 Stunden
•	Installation Kollektoren	0,5 Stunden
•	Anschluss Kollektoren	1 Stunde
•	Inbetriebnahme	Restlicher Tag

Tag 4 – Ein Monteur

Restarbeiten, Einweisung Kunde *) Halber Tag

*) Nicht begleitete Tätigkeiten

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

6 Ergonomische Beurteilung

Während der Begehung wurde die Installation ergonomisch bewertet sowie allgemeine Probleme bei der Installation herausgearbeitet und mit den Handwerkern besprochen. Es wurde keine muskuläre Überlastung festgestellt. Die durch ein hohes Gewicht kritischen Komponenten, Wasserspeicher und Kollektoren, wurden gar nicht oder nur kurze Strecken manuell transportiert. Der Wasserspeicher wurde mit einem Treppensteiger in den Keller transportiert. Die Kollektoren wurden mit einem Kran aufs Dach gehoben und manuell lediglich ausgerichtet. Während der Installation der hydraulischen Leitungen im Keller waren jedoch Zwangshaltungen ("ungünstige Körperhaltungen, die zu statischen Muskelüberbeanspruchungen führen", DIN 33400) erkennbar (vgl. Abbildung 4)

Abbildung 4: Zwangshaltung (insb. bei Person in der Mitte; Hand 2) und beengte Verhältnisse bei der Hydraulikinstallation

Während der Dacharbeiten lag eine erhöhte psychische Belastung vor, da diese Tätigkeiten nur ungern durchgeführt werden.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

7 Zusammenfassung

Insgesamt sind die Monteure sehr zufrieden mit Paradigma Aqua System (insbesondere, da es mit Wasser läuft).

7.1 Feedback der Monteure

Nachfolgende Auflistung stellen eine Zusammenfassung des Feedbacks der Monteure dar:

- Vormontierte Teile kommen sehr positiv an.
- Fortbildungen sehr gut, das Feedback der Monteure sollte mehr geschätzt werden.
- Kundendienst gut und hilfreich, aber teilweise lange Warteschleife.
- Anleitungen gut und hilfreich, teilweise Farbe wünschenswert.
- Weniger Werkzeug durch konstante Schlüsselweiten bei allen Bauteilen gewünscht. Insbesondere bei Dacharbeiten.
- Vorinstallierte und angeschlossene Elektrik/Regelung hervorragend.
- Tüten mit Kleinteilen nicht immer sinnvoll sortiert: häufig waren mehrere Tüten gleichzeitig offen um alle Dichtungen zu kriegen → in Werkzeugkoffer lagen dann mehrere halb volle Tüten mit Schrauben/Anschlüssen.
- Bauteiländerungen immer in Anleitungen übernehmen.
- Bei größeren Änderungen am System Schulungen f
 ür die Monteure anbieten.

7.2 Empfehlungen und Fazit

Während einige Aufgaben, die mittelfristig und im Rahmen dieses Projekts nicht vereinfacht werden können, viel Zeit benötigen, gibt es zwei Haupt-Punkte, die zu einer hohen Zeit- und Aufwandsersparnis führen können: Zunächst muss die Zeit, die ein Handwerker auf dem Dach verbringt, möglichst verkürzt werden. Dies kann einerseits durch weniger Schraubverbindungen geschehen, anderseits auch durch eine überarbeitete Unterkonstruktion, bei der die Kollektoren direkt auf den Dachhaken befestigt werden und eine aufwändige Unterkonstruktion obsolet wird. Eine weitere Zeitersparnis und kann durch Kurz-Anleitungen auf den Bauteilen erreicht werden welches zusätzlich auch die Fehlergefahr minimiert. Dies kann von einer einfachen Beschriftung von Rohren, Löchern, Anschlüssen und Schläucher/Kabeln bis hin zu Tipps für die Montage reichen, etwa empfohlene Einbauhöhen, Aufgaben Reihenfolgen, o.ä. Diese Informationen sind bereits in der Montageanleitung vorhanden, müssten also nicht neu entwickelt werden, sondern lediglich auf den Bauteilen angebracht werden.

Als teilweise problematisch angesehen wird, dass Änderungen an Bauteilen sind nicht immer direkt in Anleitungen umgesetzt sind. Ein konkretes Beispiel konnte allerdings vor Ort nicht genannt bzw. gezeigt werden. Zudem besteht teilweise der Wunsch auf seltenere größere Änderungen (dann mit Schulungen) anstatt jede Anlage immer minimal zu verändern. Manche Anforderungen aus der Anleitung werden teilweise als realitätsfern bezeichnet (z.B. Schrauben auf Dach mit Drehmomentschlüssel montieren). Es besteht der Wunsch, dass die Konstrukteure regelmäßig die Anlagen selbst verbauen, um theoretische Überlegungen in der Praxis umgesetzt zu sehen. Des Weiteren beseht der Wunsch, dass ein Feedback durch die Monteure einfacher gestaltet wird und hierfür eine bessere Reaktion durch den Hersteller erfolgt. Es besteht das Gefühl, dass das "Feedback häufig untergeht".

Abschließend sollte nach dem Poka Yoke-Prinzip ausgeschlossen werden, dass Teile falsch montiert werden können. Dies kann etwa unterschiedliche Anschlussarten für Hin- und Rücklauf von Flüssigkeiten bedeuten, eine farbliche Kodierung verschiedener Anschlüsse oder etwa Alu-Profile auf der Dachkonstruktion, die nur in exakt einer Position auf den Dachhaken verbaut werden können.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

Anhang H: Bericht Montagebegleitung Solvis

FRAUNHOFER-INSTITUT FÜR ARBEITSWIRTSCHAFT UND ORGANISATION IAO

MONTAGEBEGLEITUNG "SOLVIS" Bericht

Dipl.-Ing. Robert Hämmerl

Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart.

Projekt: KoST "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen"

Stuttgart, 20.08.2019

Inhaltsverzeichnis

1	Allgemeine Informationen	3
2	Grundsätzliches	3
2.1	Montageanleitung und Servicekontakt	3
2.2	Verpackungen und Sortierung	3
3	Heizsystem	3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Zugang und Transport Anschlüsse Solarübergabestation Ausdehnungsgefäß Isolierung Abgas-und Frischluftrohr Schalldämpfer Bedienfeld und Software.	34556678
4	Solarkollektoren	8
4.1	Aufdachhalter und Halterungsschienen	8
4.2	Montage Solarkollektoren	9
5	Zeitaufwand1	0
6	Ergonomische Beurteilung1	1
7	Zusammenfassung1	2
7.1	Unterstützung in der Montage1	2
7.2	Empfehlungen und Fazit	2

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

1 Allgemeine Informationen

Bei dem Objekt handelte es sich um ein privates 2-stöckiges 1-Familen-Haus mit einer 1-Zimmer-Einliegerwohnung im Untergeschoss. Insgesamt werden zwei Solarkollegtoren vom Typ "SolvisCala" mit einer Aperturfläche von je 2,4 m² sowie das Heizsystem "SolvisBen" installiert.

2 Grundsätzliches

2.1 Montageanleitung und Servicekontakt

Die Montageanleitungen wurden nur bei der aller ersten Montage benötigt und auch nur um vereinzelte Informationen nachzuschauen, da der Monteur bereits Erfahrungen mit anderen Solvis Systemen hat. Der Support von Solvis wurde bisher nicht benötigt. Die Monteure melden ab und zu Verbesserungsvorschläge direkt an Solvis, die dann teilweise auch umgesetzt werden. Grundsätzlich wünschen sich die Monteure wünschen mehr Praxiserfahrung der Konstrukteure.

Alle Montageanleitungen verbleiben nach Fertigstellung beim Kunden und werden an einen am Heizsystem dafür vorgesehenen Ort abgelegt, für den Fall, dass diese Unterlagen zukünftig z.B. bei der Wartung, wieder benötigt werden.

2.2 Verpackungen und Sortierung

Die Lieferungen von Solvis an die Monteure werden immer überprüft. Für jedes Bauteil, das sich in einem Sammelkarton befindet, existiert außerhalb an den Karton angebracht ein Aufkleber. Anhand dieser werden zuerst überprüft ob die Bestellung vollständig ist, ist dies der Fall, wird der Karton geöffnet und der Inhalt erneut auf Vollständigkeit überprüft.

Bauteile und Zubehör wie z.B. Schrauben sind in verschiedene Kartons gepackt. Insgesamt wirkt es sehr gut sortiert. Durch die gute Beschriftung sind die benötigten Teile schnell zu finden. Durch die vielen einzelnen Kartons entsteht allerdings relativ viel Müll an Kartonagen, die entsorgt werden müssen.

3 Heizsystem

3.1 Zugang und Transport

Der Zugang in den Keller zum Aufstellort des Heizsystems ist sehr verwinkelt und eng. Durch die vorhandene Einliegerwohnung kann der SolvisBen direkt in den Keller gebracht werden, ohne im Haus Treppen überwinden zu müssen. Im Keller selbst geht es nochmal ca. einen Meter wenige Stufen hinunter. Diese kleine Treppe ist so eng, sodass der SolvisBen über das Geländer gehoben werden müsste. Das wird von den Monteuren aber aus gesundheitlichen und sicherheitstechnischen Gründen nicht gewollt, sodass nach Rücksprache mit dem Eigentümer das Geländer abgesägt wurde (siehe Abbildung 1) und der SolvisBen so ohne größere Schwierigkeiten an den Einsatzort aufgestellt werden kann. Das Geländer wurde nach Beendigung der Arbeiten wieder angeschweißt.

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

- 14

Abbildung 1: Aufstellort und abgesägtes Geländer

Für den manuellen Transport (z.B. Be- und Entladen aus dem Fahrzeug oder das Aufstellen und Positionieren am Aufstellort) sind Tragegriffe am SolvisBen vorhanden, was von den Monteuren als sehr positiv angenommen wird, da die Griffe einen sauberen und festen Griff ermöglichen und so eine schädigende Haltung des Rückens vermieden werden kann. Allerdings empfinden die Monteure die Länge der Schrauben, mit der die Tragegriffe am SolvisBen angebracht sind, als zu kurz (nur 2-3 Gewindegänge reingedreht) und somit als zu unsicher, sodass diese vor dem Transport auf eigene Kosten und Zeit durch längere Schrauben ersetzt werden. Um den SolvisBen zu seinem Aufstellort zu bringen, wurden die Tragegriffe abmontiert, durch Rollen ersetzt und zum Einsatzort geschoben. Diese Idee stammt von den Monteuren selbst. Die Rollen werden am Einsatzort wieder durch den Griff ersetzt und können für den nächsten Transport erneut verwendet werden.

3.2 Anschlüsse

Zu Beginn wurde die aktuelle Situation von den Monteuren analysiert (welches Rohr hat welche Funktion etc.) und mit dem Hausbesitzer besprochen.

Die Rohre des Hauses, an die der SolvisBen angeschlossen werden muss, haben einen Durchmesser von 70mm und müssen auf 22mm verjüngt werden. Hierfür werden die alten Rohre mit einer elektrischen Metallsäge abgesägt und eine Verjüngung angeschweißt. An diese Verjüngung wiederum wird ein 22m Kupferrohr mit Gewinde geschweißt (siehe Abbildung 2) Die Kupferrohre werden von Hand auf die benötigte Länge zurechtgesägt.

Nachdem die vorhandenen Rohre des Hauses vorbereitet wurden, kann der Anschluss zum SolvisBen erfolgen. Die Verrohrung wird komplett manuell gefertigt, d.h. Kupferrohre werden mit einem Rohrschneider manuell auf die richtige Größe zurechtgeschnitten und miteinander verlötet. Dies ist günstiger als das vorhandene Verrohrungsset von Solvis. Die Rohre in dem Set von Solvis werden verschraubt. Der Monteur bevorzugt allerdings verlötete Verbindungen. Lediglich die vorderen Anschlüsse an den SolvisBen werden gepresst, da hier nicht gelötet werden kann, weil die Hitze die Isolierung beschädigen könnte.

Beim SolvisBen kommen die Rohre (Wellenschlauch) unten raus, was von den Monteuren als unpraktisch angesehen wird, da dadurch kein direkter Zugang zum Anschluss möglich ist, welcher beispielswiese im Falle eines Lecks notwendig ist. Bei der größeren Anlage, dem SolvisMax, ist dies besser gelöst, da die Rohre seitlich (wahlweise rechts oder links) herauskommen. Generell sind die Wellenschläuche bei diesem Monteur nicht

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

beliebt, da diese nach eigenen Angaben zu anfällig sind. Gewünscht wären Edelstahlrohre. Die Verrohrung im erfolgt hauptsächlich mit Kupferrohren, welche gelötet werden (siehe Abbildung 3). Vereinzelnd kommen auch Kunststoffrohre zum Einsatz, diese werden gepresst.

Abbildung 2: Anschluss an bestehende Verrohrung

Abbildung 3: Verrohrung mit Kuper- und Kunststoffrohren

Gut gelöst ist die Möglichkeit zur Reparatur der Fühler, da diese leicht austauschbar sind. Die Schnittstelle der Fühler ist auch mit Fühlern von anderen Herstellern kompatibel.

3.3 Solarübergabestation

In der Montageanleitung empfiehlt Solvis eine Monatehöhe von 1,2m und einen Abstand von 0,5m zum Solvis Ben. Der Monteur wünscht sich eine Möglichkeit bzw. Vorrichtung, um die Solarübergabestation direkt an den SolvisBen zu befestigen, z.B. wahlweise links oder rechts. Dadurch könnte eine exakte vorgefertigte Verrohrung mitgeliefert werden, was Aufwand und folglich Zeit und Koste spart. Bei variabler Anbringung der Solarübergabestation müssen alle Rohre zur Solarübergabestation manuell angepasst und verlegt werden. Des Weiteren sind die mitgelieferten Schläuche der Ausblasleitung mit ca. 0,4m sehr kurz. Die Ausblasleitung wird mit dem Auffangbecken verbunden, damit die Flüssigkeit bei Überdruck nicht unkontrolliert irgendwohin läuft. Daher muss der Schlauch zusätzlich manuell verlängert werden.

Außerdem hat die Solarübergabestation keine Schallentkopplung für die mitgelieferten Aufhängeschiene, daher muss der Monteur zusätzlich ein Moosgummiband anbringen. Zudem sind die mitgelieferten Schrauben nach Meinung des Monteurs zu klein dimensioniert. Daher werden eigene größere Schrauben verwendet, was aber dazu führt, dass die Bohrungen in der Aufhängeschiene nachgebohrt (vergrößert) werden müssen.

3.4 Ausdehnungsgefäß

Solvis sieht vor, dass das Manometer direkt an das Ausgleichsgefäß angebracht wird (Anschlüsse befinden sich unten). Laut Monteur wird das Ausdehnungsgefäß meist relativ niedrig angebracht, sodass sich dann das

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

Manometer in Bodennähe befindet und somit sehr schlecht einzusehen ist. Die Möglichkeit das Ausdehnungsgefäß auf dem Kopf zu montieren ist von den Monteuren nicht erwünscht, da man dadurch das Wasser nicht komplett aus dem System bekommt, falls dies bei einer Wartung oder Reparatur nötig ist. Daher wird an einer gut einzusehenden Position ein zusätzliches Manometer in den Kreislauf installiert, was mit einem zusätzlichen zeitlichen Aufwand und zusätzlichem Material verbunden ist und somit zu höheren Kosten für den Endkunden führt.

3.5 Isolierung

Im Vergleich zur vorherigen Version verfügt der zum Zeitpunkt der Installation verwendeten Version des SolvisBen über eine neue steckbare Isolierung. Die Monteure stehen dieser neuen Isolierung kritisch gegenüber, da sie nicht wissen ob die Steckverbindungen mit der Zeit bei regelmäßiger De- und Montage für die Wartung zu Bruch geht und ob diese Art der Isolierung auf Dauer beständig gegenüber den Temperaturschwankungen ist. Des Weiteren rutschen die Gummilippen, die die verschiedenen Teile der Isolierung verbinden, heraus (siehe Abbildung 4). Die Monteure schlagen vor die Gummilippen an einer Seite zu verkleben, um ein herausrutschen zu vermeiden.

Abbildung 4: Herausrutschende Gummilippen der neuen steckbaren Isolierung

3.6 Abgas-und Frischluftrohr

Das Abgas- und Frischluftrohr wird über den vorhandenen Kamin verlegt. Hierfür werden zuerst eine Schiene und ein Winkelrohr in das untere Ende des Schachts montiert. Anschließend wird die exakte Länge des Schachts vermessen und die Rohre für die benötigte Länge vorbereitet. Der Zugang zur oberen Öffnung des Kamins erfolgt mit einer LKW-Arbeitsbühne (siehe Abbildung 5). Das Anmieten der LKW-Arbeitsbühne ist im Vergleich zur Sicherung mit Seilen teurer, spart aber Zeit und ist für die Monteure angenehmer. Nicht alle Monteure gehen auf das Dach. Im Allgemeinen ist die Arbeit in der Höhe und auf dem Dach sehr unbeliebt und sollte immer auf ein Minimum beschränkt werden.

Fraunhofer IAO

Bericht - Montagebegleitung "Solvis"

Abbildung 5: Montage des Abgas- und Frischluftrohrs mit einer LKW-Arbeitsbühne

3.7 Schalldämpfer

Für den Schalldämpfer des Abgas-und Frischluftrohrs wird ein Siphon benötigt. Es ist allerdings keiner Vorhanden, sodass dieser von den Monteuren selbst gebaut werden muss (siehe Abbildung 6). Ein vorgefertigter Siphon würde Zeit und Aufwand sparen. Dieser sollte Schraubverbindungen haben, sodass er für eine Reinigung leicht geöffnet bzw. demontiert werden kann.

Abbildung 6: Selbstgebauter Siphon des Abgas-und Frischluftrohrs

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

3.8 Bedienfeld und Software

Die Monteure empfinden die Bedienung über das Touch-Display als sehr intuitiv und dieses kommt auch bei den Kunden gut an. Positiv hervorzuheben sind die Funktionen in der "Fachmannebene". Hier besteht die Möglichkeit Einstellungen zu speichern, die zu einem späteren Zeitpunkt wieder abgerufen werden können, falls beispielsweise ein Kunde selbst Einstellungen (unabsichtlich) ändert oder die Grundeinstellungen (Werkseinstellung) lädt.

Das Touch-Display sollte eine Abdeckung haben. Es kommt manchmal vor, dass der Kunde z.B. beim Putzen der Anlage über das Touch-Display wischt und dabei die Anlage ausversehen ausschaltet und dann den Kundendienst anruft.

Des Weiteren wird die Funktion, ein Softwareupdate über eine SD-Karte aufzuspielen, als gut gelöst empfunden. Ebenso die Möglichkeit die Anlage über einen integrierten Netzwerk-Anschluss an das Internet anzuschließen. Dadurch können Informationen über den Status der Anlage vom Monteur aus der Ferne bereits ausgelesen werden.

4 Solarkollektoren

4.1 Aufdachhalter und Halterungsschienen

Solvis liefert für die Dachmontage der Sonnenkollektoren Schrauben mit einer Länge von 110mm. Diese sind allerdings nur für Dächer ohne Isolierung gedacht. Für Isolierte Dächer verwenden die Monteure eigene Schrauben mit einer Länge von üblicherweise 220 und 280 mm.

Die Aufdachhalter sind vormontiert (siehe Abbildung 7), was bei den Monteuren sehr gut ankommt. Allerdings sind die Schrauben so fest verschraubt, dass sie am Boden mit Händen und Füßen unter vollem Krafteinsatz gelöst werden müssen, auf dem Dach wäre das nicht möglich. Das erfordert unnötig Zeit und Kraftaufwand für den Monteur. Wissen das die Monteure nicht, oder denken sie nicht daran und sind schon auf dem Dach, müssen sie und die Dachhalter wieder vom Dach, was Zeit kostet.

Die Halterungsschienen sind beliebig erweiterbar und vorgebohrt (siehe Abbildung 8), was von dem Monteur sehr positiv aufgenommen wird, da man dabei fast nichts falsch machen kann. Die Schienen werden mit dem Akkuschrauber verschraubt.

Abbildung 7: Vormontierter Aufdachhalter

Abbildung 8: Vorgebohrte Halterungsschienen

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

4.2 Montage Solarkollektoren

Die Solarkollektoren werden auf dem sehr niedrig und relativ flachem Garagendach montiert wofür kein Kran o.ä. erforderlich ist (siehe Abbildung 9). Mit einer Person auf dem Dach sowie zwei Personen am Boden können die Solarkollektoren auf das Dach gehoben werden. Die Tragehilfen für die Kollektoren sind dabei sehr hilfreich, allerdings bricht der Griff häufig ab und muss erneuert werden (siehe Abbildung 10). Eine Flügelmutter aus Metall würde hier zu einem sichereren Gefühl der Monteure führen und auch zu einer längeren Lebensdauer.

Abbildung 9: Montage der Aufdachhalter

Abbildung 10: Transporthilfe für die Kollektoren

Die Montagehilfe (Absturzsicherung) der Sonnenkollektoren sind sehr praktisch, damit kann der Kollektor zuerst eingeklemmt werden und dann sauber verschraubt werden.

Die Glasscheiben oder zu mindestens der Rand (10-20cm) sollten mit Folie beklebt werden, um die Glasscheibe vor schmutzigen Händen/Handschuhen zu schützen. Eine zusätzliche und nachträgliche Reinigung auf dem Dach wird nicht durchgeführt. Die Verschmutzung wird zwar früher oder später von Regen weggewaschen, aber sieht im ersten Moment nicht gut aus und fällt auf, vor allem dem Kunden. Kein "schöner" Anblick für Kunden unmittelbar nach der Fertigstellung.

Zur korrekten Ausrichtung der Sonnenkollektoren auf dem Dach wird bisher meist eine Schlagschnur eingesetzt. Dieses Verfahren ist sehr zeitaufwändig und benötigt zwei Personen. Besser wäre eine Montagehilfe. Beispielsweise ein rechtwinkliges Bauteil, dass in den Hohlraum der Halterung (Schienen sind sowieso offen und hohl) temporär eingeführt werden könnte, würde schon ausreichen, um die Solarkollektoren korrekt zu montieren. Dies könnte als wiederverwendbare Montagehilfe entwickelt werden.

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

5 Zeitaufwand

Insgesamt waren bis zu vier Monteure vor Ort tätig. Allerdings waren nicht immer alle zu jeder Zeit an der Installation der Solarkollektoren und der Heizungsanlage tätig. Unter anderem wurden auch die Heizkörper getauscht, die für die Beobachtungen nicht relevant waren.

Tag 1 - Ein Monteur + ein Auszubildender

- Ausbau der alten Anlage
- Vorbereitung und Transport neue Anlage
- Absprache mit Eigentümer und Verrohrung

Tag 2 – Ein Monteur + ein Auszubildender

- Verrohrung
- Tag 3 Ein Monteur
 - Installation Solarübergabestation, Ausdehnungsgefäß und Verrohrung

Tag 4

- Zwei Monteure: Installation Abgas- und Frischluftrohr + Schalldämpfer
- Ein Monteur: Installation Elektrik + Inbetriebnahme SolvisBen

Tag 5

 Ausbau der alten Heizkörper im gesamten Haus und Einbau der neuen Heizkörper (keine Begleitung durch IAO, da nicht relevant f
ür das Projekt)

Tag 6

- Ein Monteur: Montage der Aufdachhalter und Unterbau
- Drei bzw. ein Monteur(e): Solarkollektoren auf Dach heben bzw. Montage Solarkollektoren
- Ein Monteur: Anschluss der Solarkollektoren

Der größte "Zeitfresser" war die manuelle Verrohrung, da diese gelötet wurde. Lediglich die wenigen Kunststoffrohre, die verbaut wurden, wurden gepresst. Grundsätzlich wäre das Pressen der Kupferrohre auch möglich gewesen und wäre mit deutlich weniger Zeitaufwand verbunden gewesen.

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

6 Ergonomische Beurteilung

Durch den Einsatz der montierten Rollen am SolvisBen und einer LKW-Hebebühne (Kaminzugang) waren keine muskulären Überlastungen erkennbar.

Das auf das Dach heben der Solarkollektoren (zwei Personen) wurde mit der "Leitmerkmalmethode zur Beurteilung von Heben, Halten und Tragen" der "Bundesanstalt für Arbeitsschutz und Arbeitsmedizin und Länderausschuss für Arbeitsschutz und Sicherheitstechnik" (2001) beurteilt:

Kriterium	Wichtung / Punktwert	Kommentar / Beschreibung
Lastgewicht	2	19kg (38kg Gesamtgewicht, auf- geteilt auf zwei Personen)
+ Haltungswichtung	+ 4	 Tiefes Beugen oder weites Vorneigen Geringe Vorneigung mit gleichzeitiger Verdrehung des Oberkörpers Last körperfern oder über Schulterhöhe
+ Ausführungsbedingungswichtung	+ 1	Einschränkung der Bewegungs- freiheit und ungünstige ergono- mische Bedingung
= Summe	= 7	
x Zeitwichtung	x 1	< 300m
= Punktwert	= 7	< 10: Geringe Belastung, Ge- sundheitsgefährdung durch kör- perliche Überbeanspruchung ist unwahrscheinlich

Der Punktwert 7 als Ergebnis und kleiner als 10 wird dem Risikobereich 1 zugeordnet, welcher als "geringe Belastung, Gesundheitsgefährdung durch körperliche Überbeanspruchung ist unwahrscheinlich" beschrieben wird.

Darüber hinaus kommt es vor allem bei er Verrohrung durch Zwangshaltungen, in der DIN 33400 beschrieben als "ungünstige Körperhaltungen, die zu statischen Muskelüberbeanspruchungen führen". Gründe für die Zwangshaltung sind:

- der begrenzte Platz im Keller, wodurch ein direkter Zugang zu den Rohren teilwiese nicht möglich ist und
- häufige "über-Kopf-Arbeiten" aufgrund der (vorhandenen) Rohrführung an der Decke.

Des Weiteren sind Arbeiten auf dem Dach mit einer psychischen Belastung verbunden.

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

7 Zusammenfassung

7.1 Unterstützung in der Montage

Folgende Unterstützungen in der Montage und Produkteigenschaften wurden von den Monteuren sehr positiv wahrgenommen:

- Hebehilfe für Sonnenkollektoren
- Tragegriffe an SolvisBen
- Gut sortierte und beschriftete Einzelteile in den Kartons, benötigte Teile werden dadurch schnell gefunden
 - Benutzerfreundliche Bedienung
- Einstellmöglichkeiten der »Fachmannebene« und Ferndiagnose über Netzwerkanschluss
- Vormontierte Bauteile wie z.B. Aufdachhalter
- Vorgebohrte Bauteile wie z.B. Halterungsschienen

7.2 Empfehlungen und Fazit

Aus den Beobachtungen und Interviews ergeben sich zusammenfassend folgende Empfehlungen:

- Stark beanspruchte Teile der Hebehilfen aus Metall fertigen anstatt aus Kunststoff, gibt dem Monteur mehr Sicherheit.
- Solarkollektoren mit Folie bekleben (bzw. mindestens am Rand 10-20cm), um Verschmutzungen bei der Montage zu vermeiden, wodurch sich ein schöneres Endbild für den Kunden ergibt.
- Montagehilfe (anstatt Schlagschnur) für die Positionierung und Ausrichtung der Halterungsschienen entwickeln / zur Verfügung stellen, wodurch die Montagezeit auf dem verringert werden kann.
- Mehr Aufklärung oder ggf. Schulung der Monteure bei Neuerungen wie z.B. neue steckbare Isolierung.
- Anschlüsse nicht von unten aus dem Kessel führen, sondern seitlich.

Fraunhofer IAO

Bericht – Montagebegleitung "Solvis"

Anhang I: Bericht Montagebegleitung Citrin

FRAUNHOFER-INSTITUT FÜR ARBEITSWIRTSCHAFT UND ORGANISATION IAO

MONTAGEBEGLEITUNG "CITRINSOLAR" Bericht

Dipl.-Ing. Robert Hämmerl

Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart.

Projekt: KoST "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen"

Stuttgart, 20.08.2019

Inhaltsverzeichnis

3 3
3 3
4
5
6
6

Fraunhofer IAO

Bericht – Montagebegleitung "CitrinSolar"

1 Allgemeine Informationen

Bei dem Objekt handelte es sich um ein privates 1-Familen-Haus mit einer 1-Zimmer-Einliegerwohnung im Untergeschoss. Insgesamt werden drei Solarkollegtoren vom Typ "CS 500" mit einer Aperturfläche von je 2,36 m² installiert. Bei diesem Objekt wurde zwar auch eine Heizungsanlage im Keller installiert, allerdings wurde dies von einem anderen Handwerksbetrieb und einem anderen Hersteller installiert, sodass sich diese Montagebeobachtung nur auf die Installation der Solarkollektoren beschränkt. Der Anschluss der Kollektoren wurde auch von dem anderen Handwerksbetrieb durchgeführt. Die Dachneigung beträgt 20° und war damit relativ flach. Der Installationsort der Solarkollektoren wurde im Vornherein mit dem Kunden (Hauseigentümer) geklärt.

2 Grundsätzliches

Die Firma CitrinSolar bietet den Kunden bzw. anderen Handwerksbetrieben an, die Solarkollektoren von hauseigenen Monteuren installieren zu lassen. Bei dieser Montage waren zwei Monteure anwesend.

2.1 Montageanleitung und Servicekontakt

Während der gesamten Installation wurden keine Anleitungen benötigt, da die hauseigenen Monteure von CitrinSolar mit der Anlage sehr vertraut waren. Daher war auch kein Kontakt zu den Servicekollegen notwendig. Verbesserungsvorschläge wurden von den Monteuren nicht geäußert. Laut ihren Aussagen werden diese immer direkt an die Entwicklung weitergegeben.

2.2 Transport und Verpackungen

Das Gerüst sowie die Solarkollektoren wurden mit einem Anhänger am selben morgen von den beiden Monteuren von CitrinSolar angeliefert und entladen. Der Zugang zum Aufstellort des Gerüsts war ebenerdig und konnte ohne Hindernisse erreicht werden (ca. 15m Entfernung). Das Gerüst wurde gemeinsam von beiden Monteuren aufgestellt. Die Solarkollektoren wurden gemeinsam von beiden Monteuren zum Gerüst getragen. Verpackungen wurden von den Monteuren wieder mitgenommen und entsorgt. Insgesamt wurden mehr Gerüstelemente mitgebracht als benötigt (siehe Abbildung 1).

Abbildung 2: Aufgebautes Gerüst

Fraunhofer IAO

Bericht – Montagebegleitung "CitrinSolar"

3 Solarkollektoren

Der Zugang auf das Dach war relativ einfach über ein aufgebautes Gerüst möglich. Dadurch wurde kein Kran bzw. keine Kletterseile benötigt. Die Dachneigung betrug 20° und war damit relativ flach. Benötigtest Werkzeuge in einem Eimer und mit einem Seil auf das Dach befördert. Ebenso wurden die Kollektoren an Seilen befestigt und von beiden Monteuren gemeinsam auf das Dach gezogen (siehe Abbildung 3 und 4).

Abbildung 3: Seile werden am Kollektor befestigt

Abbildung 4: Kollektor wird mit Seilen auf das Dach gezogen

Während der Montage wurde stets auf die eigene Sicherheit geachtet. Soweit es möglich war, wurden Sicherheitshandschuhe getragen. Körperliche Überbelastung beim Heben und Tragen wurde von den Monteuren aus eigenem Interesse vermieden.

Die Rohrverbindung der Kollektoren untereinander wurde gesteckt und die Wellenschläuche für den Anschluss der Kollektoren wurden manuell verschraubt. Im Vergleich zum Löten bringt dies eine deutliche Zeitersparnis. Die Halterungschienen waren in ihrer Länge für die drei Kollektoren vorbereitet und wurden mit einem Inbusschlüssel manuell verschraubt. Insgesamt waren keine manuellen Anpassungen nötig. Alle benötigten Bauteile konnten ohne Anpassung installiert werden.

Die horizontale Ausrichtung der Kollektoren erfolgte mit einem Zollstock.

Beendet wurde die Installation mit einer Dichtigkeitsprüfung.

Insgesamt waren die Monteure waren sehr gut vorbereitet. Das benötigten Werkzeuge und Hilfsmittel beschränkten sich auf das nötigste (Akkuschrauber mit nur einem einzigen verwendeten Bit, zwei Seile inkl. Halterungen für die Kollektoren, ein Inbusschlüssel, Winkelschleifer, Hammer, ein Schraubenschlüssel, Eimer, Leuchte, Zollstock, Messer, Kompressor, Spray, Silikon).

Fraunhofer IAO

Bericht - Montagebegleitung "CitrinSolar"

4 Zeitaufwand und eingesetztes Werkzeug

Die Installation wurde zu jeder Zeit von beiden Monteuren durchgeführt. Diese arbeiteten sehr gut aufeinander abgestimmt zusammen. Zu keiner Zeit gab es für einen der Monteure einen Leerlauf. Im Folgenden sind die Tätigkeiten, die Anzahl der daran beteiligten Monteure, das verwendete Werkzeug sowie die dafür benötigte Zeit dargestellt:

7.00 – 7.20 Uhr (20min) Entladen des Gerüsts (2 MA)

Gerüst wird manuell entladen; auf- und absteigen auf Anhänger; es werden nur so viele Gerüstelemente entladen; wie benötigt werden (insgesamt wurde mehr mitgebracht)

7.20 – 7.30 Uhr (10 min) Aufbau des Gerüsts (2 MA)

Gerüst wird aufgebaut;

Hilfsmittel: Leuchte (Akkubetrieben, da noch dunkel)

7.30 – 7.40 Uhr (10 min) Montagevorbereitung (2 MA)

Werkzeug, Leiter und benötigte Materialien (Metallziegel, Modulhalter, Halteschienen, Wellenschläuche) werden zum Installationsort getragen; Werkzeug wird mit Eimer und Seil auf die oberste Ebene des Gerüsts befördert; Leiter an Seitenwand des Hauses wird aufgestellt um Zugang unter das Dach zu bekommen 7.40 – 8.20 Uhr (40 min)Montage Halterungsschiene (2 MA)

Dachziegel werden entfernt; Modulhalter werden an Dachbalken geschraubt; Halterungsschienen werden montiert (geschraubt); horizontale Ausrichtung erfolgt mit Zollstock;

Werkzeug: Akkuschrauber

8.20 – 8.45 Uhr (25 min) Montage der Kollektoren (2 MA)

Kollektoren (3 Stück) werden manuell zum Gerüst getragen und mit temporär angebrachten Halterungen an Seilen befestigt und hochgezogen (siehe Abbildung 3 und 4) und an den Halterungsschienen manuell mit Inbusschlüssel verschraubt; Kollektoren werden über Steckverbindungen miteinander verbunden; Werkzeug: Inbusschlüssel, Halterungen, Seile

8.45 – 9.15 Uhr (30min) Verrohrung (2 MA)

Dachziegel wird entfernt, flexible Wellenschläuche werden an den Kollektor geschraubt und durch das Dach geführt, hierfür wurde der entfernte Dachziegel mit einem Winkelschleifer und Hammer in Form gebracht, um den Aufsatz für die Schlauchdurchführung anzubringen; Messfühler wird montiert und mit Kabelbinder an Wellenschlauch fixiert; Kollektoren und Rohre werden mit einem Kompressor und Spray (Dichtigkeitsprüfmittel) auf Dichtheit geprüft, Metallziegel werden mit Silikon abgedichtet;

Werkzeug/Hilfsmittel: Winkelschleifer, Messer (zum Stutzen des Kabelbinders), Kompressor, Silikon, Spray, Hammer, Schraubenschlüssel

9.15 – 9.35 Uhr (20 min) Abbau des Gerüsts und Aufräumen (2 MA)

Gerüst wird abgebaut und auf Anhänger geladen; ebenso wird das Werkzeug auf den Anhänger geladen; Verpackungsmaterialien werde mitgenommen

Mit 40 Minuten benötigte die Montage der Modulhalter und Halterungsschienen die meiste Zeit. Durch das Gerüst konnte sowohl ein Kraneinsatz als auch das Anbringen von Klettergurten vermieden werden, was mit hohem Zeitaufwand und Kosten verbunden gewesen wäre.

Fraunhofer IAO

Bericht - Montagebegleitung "CitrinSolar"

5 Ergonomische Beurteilung

Die Hebe- und Montagetätigkeiten der Kollektoren wurde mithilfe der "Leitmerkmalmethode zur Beurteilung von Heben, Halten und Tragen" (Bundesanstalt für Arbeitsschutz und Arbeitsmedizin und Länderausschuss für Arbeitsschutz und Sicherheitstechnik 2001) beurteilt:

Kriterium	Wichtung / Punktwert	Kommentar / Beschreibung
Lastgewicht	4	20,5kg (41kg Gesamtgewicht, aufgeteilt auf zwei Personen)
+ Haltungswichtung	+ 2	 Geringes Vorneigen des Oberkörpers Last am Körper oder körpernah
+ Ausführungsbedingungswichtung	+ 1	Einschränkung der Bewegungsfreiheit und un- günstige ergonomische Bedingung
= Summe	= 7	
x Zeitwichtung	x 1	< 300m
= Punktwert	= 7	< 10: Geringe Belastung, Gesundheitsgefährdung durch körperliche Überbeanspruchung ist unwahr- scheinlich

Der Punktwert 7 als Ergebnis und kleiner als 10 wird dem Risikobereich 1 zugeordnet, welcher als "geringe Belastung, Gesundheitsgefährdung durch körperliche Überbeanspruchung ist unwahrscheinlich" beschrieben wird. Schwere Komponenten wie die Solarkollektoren mussten nur für sehr kurze Zeit manuell gehoben werden. Während der Montage der Modulhalter auf dem Dach kam es allerdings zu Zwangshaltungen, bei denen die Monteure in gebückter Haltung auf den Knien saßen. Die psychische Belastung durch Arbeiten auf dem Dach in großer Höhe stellte für diese Monteure kein Problem dar. Dennoch können Arbeiten auf dem Dach zu einer psychischen Belastung führen.

6 Zusammenfassung

Zusammenfassend lässt sich die sehr schnelle Montage der drei Kollektoren in nur 2h 35min auf folgende Maßnahmen zurückführen:

- gut geschulte und vorbereitete Monteure
- Schraub- und Steckverbindungen anstelle von Lötverbindungen
- nur wenig Werkzeugeinsatz nötig und nur in einer Größe je Typ
- einfacher und schneller Zugang auf das Dach durch das Gerüst, daher war weder ein Kran noch ein Anseilen notwendig
- keine manuelle Anpassung von Bauteilen, z.B. hatten die Halterungsschienen bereits die benötigte Länge für drei Kollektoren
- kein Leerlauf: jeder Monteur hatte zu jedem Zeitpunkt etwas zu tun

Der größte "Zeitfresser" war die Montage der Modulhalter und der Halterungsschiene.

Grundsätzlich ergeben sich folgende allgemeine Empfehlungen:

- Arbeitszeiten auf dem Dach minimieren
- Bauteile vormontieren
- Stecken, schrauben und pressen von Anschlüssen und Rohren anstatt löten und schweißen
- manuelle Anpassungen vermeiden

Ecou	-h	ofe	- 1 A	ł
Flau		ole	1.124	1

Bericht – Montagebegleitung "CitrinSolar"

Anhang J: Bericht Montagebegleitung Weishaupt

FRAUNHOFER-INSTITUT FÜR ARBEITSWIRTSCHAFT UND ORGANISATION IAO

MONTAGEBEGLEITUNG "WEISHAUPT" Bericht

Dipl.-Ing. Robert Hämmerl

Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart.

Projekt: KoST "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen"

Stuttgart, 23.08.2019

Inhaltsverzeichnis

1 2		Allgemeine Informationen Grundsätzliches	3
	2.1 2.2	Montageanleitung und Servicekontakt Verpackungen und Sortierung	3
3		Heizsystem	4
	3.1	Zugang und Transport	4
	3.2	Montage	4
	3.3	Inbetriebnahme	4
4		Montage Solarkollektoren	5
5		Zeitaufwand	6
6		Ergonomische Beurteilung	7
7		Zusammenfassung	9
		-	

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

1 Allgemeine Informationen

Bei dem Objekt handelte es sich um einen Neubau mit 12 Wohnungen. Es werden ein Gas-Solar-Heizsystem mit drei Speichern und 18 Solarkollektoren mit einer Aperturfläche von jeweils 2,33m² installiert. Aufgrund der Größe des Objekts war keine durchgängige Begleitung der Montage möglich. Daher beziehen sich die nachfolgenden Informationen primär auf die direkte Befragung des Monteurs.

2 Grundsätzliches

Die komplette Montage wurde von einem einzigen Monteur durchgeführt.

2.1 Montageanleitung und Servicekontakt

Die Montageanleitungen werden überflogen und nach Bedarf genutzt, um vereinzelt etwas nachzuschlagen. Umso öfter eine Anlage vom selben Typ verbaut wird, umso seltener wird die Montageanleitung benötigt. Den "Übersichtsaufbau" (siehe Abbildung 1) hat der Monteur jederzeit zur Hand und kam sehr positiv an.

Abbildung 1: Übersicht zum Aufbau

Bei Unklarheiten wird auch der Hersteller kontaktiert. Allerdings wird hierfür nicht die Hotline angerufen, sondern ein dem Monteur bereits bekannter Mitarbeiter des Herstellers, um so direkt und schneller an die Informationen zu kommen.

Nach Aussage des Monteurs wurden in der Vergangenheit Verbesserungen und Vorschläge an die Außendienstmitarbeiter gemeldet. Allerdings wurde dies irgendwann aufgegeben, da diese "zu wenig oder zu langsam" umgesetzt werden.

2.2 Verpackungen und Sortierung

Bei Anlieferung, welche direkt durch den Hersteller erfolgt, werden die gelieferten Bauteile auf der Bauteilliste abgehakt, also auf Vollständigkeit überprüft. Die Beschriftung auf den Verpackungen und die Sortierung wird als sehr gut wahrgenommen, wodurch benötigte Teile sehr schnell gefunden werden können. Die Verpackungen werden vom Monteur selbst entsorgt.

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

3 Heizsystem

3.1 Zugang und Transport

Der Zugang zum Keller war ebenerdig und ohne Hindernisse. Transportiert wurden die Bauteile, vor allem die Speicher, auf einer Sackkarre. Hierfür sind Griffe wünschenswert. Die Türe zum Kellerraum war mit 100cm breit genug. Allerdings war die Türe zum Vorraum mit 80cm nicht breit genug und musste aufgemeißelt werden. Da es sich um einen Neubau handelte war dies ein Planungs- bzw. Umsetzungsfehler, da dies hätte verhindert werden können.

3.2 Montage

Die Anordnung, also die Installationsorte plant der Monteur selbst. Obwohl es ein Neubau ist, wurde für die benötigten Geräte in dem dafür vorgesehenen Raum nicht genügend Platz eingeplant. Dies führt dazu,

- dass nach der Fertigstellung nicht mehr alle Bauteile erreichbar sind,
- die Verrohrung komplizierter und aufwändiger gestaltet werden muss und
- mehr Zeit durch die entstehende schlechtere Montagebedingung benötigt wird.

Obwohl die Anschlüsse alle 2 Zoll aufwiesen, wurden 1,5 Zoll Rohre verwendet. Die Rohre wurden alle gepresst, außer an den Anschlüssen, an diese wurden die Rohre geschraubt. Es wurden keine Wellenrohrschläuche eingesetzt und auch keine Rohre verlötet.

Der mitgelieferte 3-Wege-Mischer hat einen geringeren Rohrdurchmesser wie die Rohre (siehe Abbildung 2), wodurch eine Verjüngung installiert werden muss, welche Zeit und zusätzliches Material erfordert.

Abbildung 2: 3-Wege-Mischer mit geringerem Rohrdurchmesser

Die Wandhalterung für die Pumpe muss selbst gebaut bzw. beschafft werden, da vom Hersteller hierfür keine existiert.

Unnötige Bauteile oder zu viel Material waren nicht bzw. kaum vorhanden. Lediglich die O-Ringe der Kupferrohre mussten ersetzt werden, da diese nicht für hohe Temperaturen ausgelegt sind.

Für den Fuß der Kessel werden von dem Monteur einzelne justierbare Füße bevorzugt als ein Standring, da dieser bei unebenem Untergrund wackelt.

Bei der Montage des Übergabemoduls wäre eine horizontal breitere Einhängeaussparung (Langloch) gewünscht gewesen, um ungenaue Bohrungen, wie sie die bei manchen Mauerwerken (z.B. Porotonstein) häufiger passieren, ausgleichen zu können.

3.3 Inbetriebnahme

Die Inbetriebnahme wird von einem Fachmann vom Hersteller übernommen.

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

4 Montage Solarkollektoren

Für den Transport der Solarkollektoren auf das Dach konnte der ohnehin auf der Baustelle vorhandene Kran verwendet werden und wurde in wenigen Minuten und ohne manuelles heben erledigt (siehe Abbildung 3).

Abbildung 3: Kran auf der Baustelle

Auf dem Dach wurden die Kollektoren auf schrägen Aufständern montiert (siehe Abbildung 4).

Abbildung 4: Montierte Solarkollektoren und Aufständer

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

Um die Kollektoren korrekt auf den Aufständern zu positionieren wurde die Montageanleitung herangezogen, um die Abstände und Maße zu ermitteln.

. Bei einem Aufständer musste ein Teil manuell angepasst werden. Es wurde gekürzt, damit die Kollektoren verbunden werden konnten, da zu wenig "Puffer" vorhanden war.

Bei nicht beachten der Ausrichtung der Kollektoren könnten diese falsch montiert werden. Informationen dazu werden auf einem Aufkleber direkt auf den Kollektoren dargestellt (siehe Abbildung 5).

Abbildung 5: Aufkleber für Ausrichtung der Solarkollektoren

Der Monteur bemängelte allerdings die fehlenden Informationen, dass keine Begründung vorlag und auch keine Erklärung zu den Folgen einer falschen Ausrichtung. Ihm war nicht klar, wieso in manchen Fällen der Kollektor um 180° gedreht werden muss. In der Anleitung war dazu auch nichts zu finden.

Als gut Empfunden wurden die flexiblen Schaumstoffisolierungen für die Verrohrung der Kollektoren auf dem Dach. Die Isolierungen sind einfach zu montieren. Allerdings müssen diese mit einer weiteren Metallverkleidung geschützt werden, da diverse Vogelarten den Schaumstoff entfernen.

Bei dem Anschluss der Solarkollektoren war keine Dichtung vorhanden. Es lagen auch keine Informationen dafür vor, ob hier evtl. gar keine benötigt wird, was möglich ist. Der Monteur konnte aber nicht davon ausgehen, denn die Dichtung hätte auch fälschlicherweise einfach nicht mitgeliefert worden sein. Sicherheitshalber wurde direkt ein Mitarbeiter beim Hersteller angerufen (vgl. Kapitel 2.1). Die Mitarbeiter des Herstellers klärte dies intern und rief den Monteur zurück. Es stellte sich heraus, dass hier tatsächlich keine Dichtung benötigt wird.

5 Zeitaufwand

Alle Tätigkeiten wurden zu jeder Zeit von einem einzigen Monteur durchgeführt. Lediglich bei dem Transport der Solarkollektoren auf das Dach wurde der Monteur vom Kranführer unterstützt, der ihm die Solarkollektoren mit dem Kran auf das Dach gehoben hat. Aufgrund der Größe des Objekts war keine durchgängige Begleitung der Montage möglich. Daher beziehen sich die nachfolgenden Informationen auf Schätzungen des Monteurs.

Speicher aufstellen und aufbauen:	ca. 3,5h
Module an Wand befestigen (2 Stück):	20 min
Kamin aufbauen:	ca. 8h
→ in der Regel dauert dies ca. 5h. Da dieser aller	dings nachträglich eingebaut werden musste,
ursprünglich eine Wärmepumpe geplant war, wa	aren die Bedingungen nicht optimal.
Komplette Verrohrung:	ca. 40h
Montaga dar Calarkallaktaran	co. / E. Tolgo

Montage der Solarkollektoren
 ca. 4,5 Tage
 → Aufständer (ca. 9h), Verrohrung, aufstellen, spülen

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

6|9

weil

6 Ergonomische Beurteilung

Das Tragen und Positionieren der Solarkollektoren wurde mit der "Leitmerkmalmethode zur Beurteilung von Heben, Halten und Tragen" der "Bundesanstalt für Arbeitsschutz und Arbeitsmedizin und Länderausschuss für Arbeitsschutz und Sicherheitstechnik" (2001) beurteilt.

Kriterium	Wichtung / Punktwert	Kommentar / Beschreibung
Lastgewicht	7	34kg Gesamtgewicht des Kollek- tors
+ Haltungswichtung	+ 4	 Tiefes Beugen oder weites Vorneigen Geringe Vorneigung mit gleichzeitiger Verdrehung des Oberkörpers Last körperfern oder über Schulterhöhe
+ Ausführungsbedingungswichtung	+ 1	Einschränkung der Bewegungs- freiheit und ungünstige ergono- mische Bedingung
= Summe	= 12	
x Zeitwichtung	x 1	< 300m
= Punktwert	= 12	10 bis < 25: Erhöhte Belastung, eine körperliche Überbeanspru- chung ist bei vermindert belast- baren Personen möglich. Für die- sen Personenreis sind Gestal- tungsmaßnahmen erforderlich.

Der Punktwert 12 als Ergebnis wird dem Risikobereich 2 zugeordnet, welcher als "erhöhte Belastung, eine körperliche Überbeanspruchung ist bei vermindert belastbaren Personen möglich. Für diesen Personenreis sind Gestaltungsmaßnahmen erforderlich" beschrieben wird. Die Ursache liegt darin, dass der Monteur die Kollektoren auf dem Dach wenige Meter (< 20m) alleine getragen hat und diese 34kg schwer sind. Würden die Kollektoren zu zweit getragen werden, wäre das Ergebnis ein Punktwert von 7, welcher unkritisch wäre.

Darüber hinaus kommt es vor allem bei der Verrohrung zu Zwangshaltungen, in der DIN 33400 beschrieben als "ungünstige Körperhaltungen, die zu statischen Muskelüberbeanspruchungen führen". Gründe für die Zwangshaltung sind:

- der begrenzte Platz im Keller, wodurch ein direkter Zugang zu den Rohren teilwiese nicht möglich ist,
- häufige "über-Kopf-Arbeiten" aufgrund der (vorhandenen) Rohrführung nahe der Decke (siehe Abbildung 6) und
- der knienden und gebeugten Haltung bei der Installation der Rohre in Bodennähe.

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

Abbildung 6: Rohre in Decken- und Bodennähe

Des Weiteren können Arbeiten auf dem Dach grundsätzlich zu einer psychischen Belastung führen. Dieser Monteur hatte damit allerdings keine Probleme.

Aufgrund des Platzmangels sind nach der Fertigstellung nicht mehr alle Anschlüsse und Rohre gut und nur durch Zwangshaltungen zu erreichen, was problematisch für zukünftige Wartungs- und Reparaturarbeiten werden kann (siehe Abbildung 7).

Abbildung 7: Nach Fertigstellung schwer erreichbare Bauteile

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

7 Zusammenfassung

Der Monteur ist grundsätzlich zufrieden mit der Anlage. Manuelle Anpassungen waren bis auf eine nicht nötig, siehe Kapitel (4). Besondere Werkzeuge oder überflüssig viele Werkzeuge wurden nicht benötigt. Es wurden nur die "Standard"-Werkzeuge und Hilfsmittel verwendet (Stift, Zollstock, Wasserwaage, Rohrschneider, Bohrmaschine, Rohrpresse, Rohrzange, Drehmomentschlüssel, Kreuzschraubendreher, Trennschleifer, Baustellenlampe, Verlängerungskabel, Trittleiter, Hanf, Fermit, Schutzbrille). Das von Weishaupt mitgeliefert "Übersicht" zum Ausbau kommt sehr gut an (siehe Abbildung 1). Ebenso wurde die Dimensionierung der mitgelieferten Schrauben als "passend" bezeichnet. Auf Basis der Beobachtungen und Anmerkungen des Monteurs ergeben sich folgende Empfehlungen:

- Ganzheitliche Planung (vor allem im Neubau) von Beginn an und auch die Monteure mit in die Planung einbeziehen, um nachträgliche Korrekturen und schlechte Montagebedingungen zu vermeiden, z.B. aufgemeißelte Türe (siehe Kapitel 3.1).
- Einheitliche Rohrdurchmesser verwenden, um das zusätzliche Installieren von Übergängen zu vermeiden, kostet zusätzliches Material und Zeit (vgl. 3-Wege-Mischer Kapitel 3.2).
- Anschlüsse und Rohre möglichst auf derselben Ebene planen, z.B. beim Einsatz verschiedener Geräte, die an der Wand nebeneinander hängen. Sind deren Anschlüsse auf derselben "Ebene", also haben denselben Abstand zu Wand, muss kein Versatz installiert werden.
- Unhandliche Bauteile wie z.B. große Wasserspeicher mit Griffen ausstatten.
- Vormontierte Teile sind wünschenswert.
- Flexible Isolierungen werden im Gegensatz zu starren bevorzugt.
- Optional bestellbare Bauteile wie beispielsweise Wandhalterung f
 ür Pumpe entwickeln, das spart dem Monteur Zeit, anstatt dass er selbst eine baut oder beschafft.
- Keine unnötigen Materialien liefern.
- Ein Bohrloch bei Einhängeaussparungen (z.B. am Übergabemodul) horizontal breiter auslegen (Langloch), um ungenaue Bohrungen, die bei manchen Mauerwerken (z.B. Porotonstein) häufiger passieren, ausgleichen zu können.
- Für den Fall, dass bei bestimmten Bauteilen keine Dichtung benötigt wird, sollte darauf explizit hingewiesen werdend. Denn nur, weil die Dichtung nicht mitgeliefert wurde, muss das nicht zwangsläufig bedeuten, dass hier keine gebraucht wird.

Fraunhofer IAO

Bericht – Montagebegleitung "Weishaupt"

Anhang K: Zusammenfassender Bericht zur Montagebegleitungen

FRAUNHOFER-INSTITUT FÜR ARBEITSWIRTSCHAFT UND ORGANISATION IAO

ZUSAMMENFASSUNG DER MONTAGEBEGLEITUNGEN

Dipl.-Ing. Robert Hämmerl

Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart.

Projekt: KoST "Kostenreduktion in der Solarthermie durch standardisierte Komponenten und Schnittstellen"

Stuttgart, 28.08.2019

Inhaltsverzeichnis

3
4
4
4
5
5

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

1 Allgemeine Informationen

Für die Montagebegleitungen wurden Termine mit verschiedenen Herstellern und Handwerksbetrieben vereinbart. Zur Vorbereitung wurden allgemeine Informationen zum Objekt und der zu installierenden Bauteile dem Fraunhofer IAO zur Verfügung gestellt. Vor Ort wurden die Montagen bei der Durchführung durch die Monteure hinsichtlich der Ergonomie, des Zeitaufwands, der verwendeten Werkzeuge und der verwendeten Materialien analysiert. Im Anschluss an die Montagen wurden die Monteure interviewt. Besonderer Schwerpunkt der Interviews lag auf den Informationen, die durch Beobachtung und Analyse nicht erkennbar waren, wie z.B. erhöhter Kraftaufwand und Verbesserungsvorschläge. Insgesamt wurden vier Begleitungen mit verschiedenen Herstellern und dazugehörigen Handwerksbetrieben durchgeführt (siehe Abbildung 1).

	1. Begleitung	2. Begleitung	3. Begleitung	4. Begleitung
Hersteller	Paradigma	Solvis	CitrinSolar	Weishaupt
Objekt	2-stöckiges 1-Familen-Haus	2-stöckiges 1-Familen-Haus mit Einliegerwohnung	1-Familen-Haus mit Einliegerwohnung	Mehr-Familien- Haus, 12 Wohnungen
Anzahl Kollektoren und Aperturfläche	2 Stk. je 4,5 m² (Röhrenkollektor)	2 Stk. je 2,4 m²	3 Stk. je 2,36 m²	18 Stk. je 2,33m²
Dachtyp	Schrägdach	Schrägdach	Schrägdach	Flachdach
Dachneigungs- winkel	ca. 25°	keine genaue Angabe, relativ flach	ca. 20°	-
Zugang zu Dach und Sicherung	Trittleiter, Klettergurt	Trittleiter, LKW- Arbeitsbühne	Trittleiter, Gerüst	Trittleiter, Gerüst
Haustyp	Bestandsbau	Bestandsbau	Bestandsbau	Neubau

Abbildung 1: Übersicht der Montagebegleitungen durch das Fraunhofer IAO

Bei der Planung der Besichtigungen wurde im Vorfeld darauf geachtet möglichst unterschiedliche Objekte zu besichtigen. Von den vier Objekten waren drei Bestandsbauten in denen nachträglich Solarkollektoren und neue Heizungsanlagen installiert wurden. Der Zugang auf die Dächer erfolgte durch unterschiedlichste Art und Weise. Das vierte Objekt war ein Neubau.

Des Weiteren wurde auf verschiedene Winkel der Dächer geachtet. Während die Bestandsbauten verschiedene Schrägdächer aufwiesen, besaß der Neubau ein Flachdach.

2 Grundsätzliches

Da alle Monteure bereits Vorerfahrungen mit denselben Anlagen oder ähnlichen Anlagen derselben Hersteller hatte, wurden die Montageanleitungen nicht oder nur selten zum Nachschlagen vereinzelter Informationen benötigt. Bei Bedarf wird auch die Servicehotline genutzt. Verbesserungsvorschläge werden an die Hersteller gemeldet.

Verpackungen werden meist von den Monteuren selbst entsorgt. Benötigte Bauteile werden entweder vom Hersteller direkt an die Baustelle geliefert oder von den Monteuren mitgebracht. Alle Bauteile wurden immer auf Vollständigkeit überprüft.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

3 Werkzeug

Das benötigte Werkzeug beschränkte sich meist auf die Standardausrüstung von Monteuren. Grundsätzlich ist es empfehlenswert nur eine Schlüsselweite einzusetzen. Vor allem bei Arbeiten auf dem Dach ist der Umfang an mitzunehmendem Werkzeug stark begrenzt.

Während der Montagebegleitungen konnten folgende eingesetzten Werkzeuge und Hilfsmittel identifiziert werden: Metallsäge, Rohrschneider, Lötkolben, Lötzinn, Schweißgerät, Handschuhe, Akkuschrauber, Seile inkl. Halterungen für die Kollektoren, Inbus, Winkelschleifer, Hammer, Schraubenschlüssel, Eimer, Leuchte, Zollstock, Messer, Kompressor, Spray, Silikon, Stift, Zollstock, Wasserwaage, Bohrmaschine, Rohrpresse, Rohrzange, Drehmomentschlüssel, Kreuzschraubendreher, Trennschleifer, Baustellenlampe, Verlängerungskabel, Trittleiter, Hanf, Fermit, Schutzbrille.

4 Materialeinsatz

Vereinzelnd mussten von den Monteuren "Kleinigkeiten" wie z.B. Schrauben und Dichtungen ersetzt oder ergänzt werden. Des Weiteren kam es in Einzelfällen dazu, dass beispielsweise Übergänge zuerst verjüngt und dann wieder erweitert werden mussten da bestimmte Bauteile (z.B. 3-Wege-Mischer) einen geringeren Rohrdurchmesser aufwies als die anderen Rohleitungen. Zu großen Materialverschwendungen kam es dadurch aber nicht. Der entscheidende Faktor war hierbei die dafür zusätzlich aufzuwendende Zeit.

5 Zeitaufwand

Eine Analyse der aufgewendeten Zeiten ergab, dass die der größte Zeitaufwand durch die Verrohrung, manuelle Anpassungen und die Installation der Dachhaken/Modulhalter verursacht wurden. Vor allem im Bestandsbau müssen sich die Monteure an die schon vorhandenen Gegebenheiten anpassen. Der Zeitaufwand für die Verrohrung kann durch folgende Maßnahmen reduziert werden:

- flexible Wellenschläuche einsetzen
- Rohre pressen oder schrauben anstatt zu löten
- bei bekannten und gleichbleibenden Abständen vorbereitete Rohrsets verwenden

Um manuelle Anpassungen zu vermeiden sollten Bauteile entsprechend ausgelegt werden, sodass diese direkt verwendet werden können oder sich deren Anpassung schnell und einfach durchführen lässt. Beispielsweise könnten Halterungsschienen bereits ab Werk auf die Dimensionen der Kollektoren angepasst bzw. einfach erweiterbar durch vorgebohrte Löcher konstruiert und produziert werden.

Dachhaken bzw. Modulhalter können bereits vormontiert geliefert werden, zum einen reduziert das die gesamte Montagezeit und zum anderen die Montagezeit auf dem Dach.

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

6 Ergonomische Beurteilung

Während der Begehung wurde die Installationen ergonomisch bewertet sowie allgemeine Probleme bei der Installation herausgearbeitet und mit den Handwerkern besprochen. Es wurde keine muskuläre Überlastung festgestellt. Die durch ein hohes Gewicht kritischen Komponenten, Wasserspeicher und Kollektoren, wurden gar nicht oder nur kurze Strecken manuell transportiert. Die Kollektoren wurden entweder mit einem Kran oder von mindestens zwei Personen auf die Dächer gehoben, wodurch es ebenfalls nicht zu einer Überbelastung kam. Die Belastungen wurden mit der "Leitmerkmalmethode zur Beurteilung von Heben, Halten und Tragen" der "Bundesanstalt für Arbeitsschutz und Arbeitsmedizin und Länderausschuss für Arbeitsschutz und Sicherheitstechnik" (2001) beurteilt. Bis auf einen Fall, indem ein Monteur einen Kollektor für wenige Meter alleine getragen hat, wurden alles Tätigkeiten mit einem Ergebnis von weniger als 10 bewertet. Ein Punktwert geringer als 10 wird der niedrigsten Risikobereich "1" zugeordnet und bedeutet: "geringe Belastung, Gesundheitsgefährdung durch körperliche Überbeanspruchung ist unwahrscheinlich". Sofern also immer min destens zwei Personen die Kollektoren tragen, bleiben die Belastungen im niedrigsten Risikobereich. Allerdings kam es bei allen Monteuren wiederehrend zu Zwangshaltungen ("ungünstige Körperhaltungen, die zu statischen Muskelüberbeanspruchungen führen", DIN 33400). Im Bestandsbau sind diese meist aufgrund des Platzmangels und der "über-Kopf-Arbeiten" zu erwarten. Dabei gilt es diese auf das Möglichste

zu minimieren. Auch im Neubau sind Zwangshaltungen nicht komplett auszuschließen, allerdings können diese durch gute Planung reduziert werden. Arbeiten auf dem Dach sind grundsätzlich mit einer psychischen Belastung verbunden und werden oft nur

7 Zusammenfassung

Grundsätzlich waren alle Monteure mit den zu installierenden Heizungsanlagen und Kollektoren zufrieden. Verbesserungsvorschläge konnten jedoch immer genannt werden.

Für die Hersteller lassen sich durch die Beobachtungen und Interviews mit den Monteuren nachfolgende Empfehlungen für die Reduzierung von Arbeitszeit, Material und folglich Kosten ableiten:

Allgemein:

- Arbeitszeiten auf dem Dach minimieren (unbeliebt und psychische Belastung)
- Exakten Bedarf an benötigten Gerüsten vorab klären
- Fortbildungen f
 ür Monteure anbieten
- Verbesserungsvorschläge der Monteure nutzen und diesen ein Feedback dazu geben
- Servicehotline mit kurzen Wartezeiten anbieten
- Bauteiländerungen immer in Montageanleitungen übernehmen

ungern durchgeführt. Daher sollten diese auf ein Minimum reduziert werden.

- Bei größeren Änderungen am System Schulungen f
 ür die Monteure anbieten.
- Kurzinformationen (-anleitungen) bzw. Übersichtskarten anbieten
- Kommunikation zwischen Konstrukteure/Entwickler und Monteuren fördern; Konstrukteure und Entwickler mehr Praxisbezug ermöglichen, z.B. bei Montage selbst mitwirken
- Manuelle Anpassungen minimieren
- Bauteile komplett ausliefern, z.B. Dichtungen, Siphon
- Ausreichende Informationen zur Verfügung stellen, z.B. wenn keine Dichtungen benötigt werden
- Verpackungen und Kartons gut und eindeutig beschriften
- Vorab klären ob LKW-Arbeitsbühne, Klettergurt mit Seilen und/oder ein Gerüst benötigt wird

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

Konstruktiv/produktbezogen:

- Notwendiges Werkzeug auf dem Dach auf ein Minimum reduzieren
- Bauteile vormontieren, aber nicht maschinell zu fest "zurren"
- Bauteile konstruktiv so auslegen, dass Schrauben nicht mit zu vielen unterschiedlichen Drehmomenten angezogen werden müssen
- Anleitungen optimieren
- Konstante Schlüsselweiten bei allen Bauteilen verwenden
- Schraub- und Steckverbindungen sowie Pressverbindungen anstatt Löten
- Poka Yoke umsetzen, um Fehler zu vermeiden
- Haltegriffe oder Hebehilfen (temporär oder permanent) an schweren Bauteilen anbringen; diese dann mit ausreichend dimensionierten Schrauben befestigen
- (wiederverwendbare) Transporthilfen anbieten (z.B. temporär montierbare Rollen)
- Anschlüsse nicht von unten aus dem Kessel führen, sondern seitlich
- Austauschbarkeit der Fühler gewährleisten
- Übergabestationen ggf. direkt an Heizung montierbar machen und vormontierten Rohre zur Verfügung stellen
- Schrauben ausreichend groß dimensionieren
- Heizanlage mit Netzwerkanschluss und Fernwartung/-diagnose ausstatten
- Montagehilfen anbieten, z.B. zum Ausrichten der Kollektoren
- Bauteile vorbohren
- Solarkollektoren mit Folie bekleben (bzw. mindestens am Rand 10-20cm), um Verschmutzungen bei der Montage zu vermeiden, wodurch sich ein schöneres Endbild für den Kunden ergibt
- Einheitliche Rohrdurchmesser verwenden um die Installation von zusätzlichen Übergängen zu vermeiden

Fraunhofer IAO

Bericht – Montagebegleitung "Paradigma"

Anhang L: IEA SHC Task 54 Info sheet Levelised Cost of Heat (LCoH)

LCoH for Solar Thermal Applications

INFO Sheet A01

Description:	Guideline for levelized cost of heat (LCoH) calculations for solar thermal applications
Date:	06/03/2017, last revised 06/05/2019 ¹
Authors:	Yoann Louvet, University of Kassel; Stephan Fischer, IGTE Stuttgart; Simon Furbo, Technical University of Denmark; Federico Giovanetti, ISFH; Michael Köhl, Fraunhofer ISE; Franz Mauthner, AEE Intec; Daniel Mugnier, Tecsol; Daniel Philippen, SPF; François Veynandt, AEE Intec

Download possible at: <u>http://task54.iea-shc.org/</u>

Introduction

In the framework of the IEA-SHC Task 54 appeared the need of assessing the costs of the heat produced by solar thermal systems over their life time to compare different designs and technological solutions with one another. The levelized cost of heat (LCOH), a measure based on the concept of levelized cost of energy, widespread in the electrical power sector, was chosen. This info sheet builds on the work of the FRoNT project [1] which laid the foundations for the application of the method to any heating technology. It aims at detailing the methodology to calculate the levelized cost of the heat substituted by solar thermal energy (LCOH_{sol,fin}). Furthermore, an extension of the concept is suggested to estimate the cost of the heat supply (LCOH_{conv,fin}).

General formulation

The LCoH for solar thermal applications can be derived from the following formula, based on [1] and [2]:

$$LCoH = \frac{I_0 - S_0 + \sum_{t=1}^{T} \frac{C_t (1 - TR) - DEP_t \cdot TR}{(1 + r)^t} - \frac{RV}{(1 + r)^T}}{\sum_{t=1}^{T} \frac{E_t}{(1 + r)^t}}$$
(1)

Where:

LCoH: levelized cost of heat in €/kWh I_0 : initial investment in € S_0 : subsidies and incentives in € C_t : operation and maintenance costs (year t) in €/a TR: corporate tax rate in %

 DEP_t : asset depreciation (year t) in \notin a RV: residual value in \notin E_t : final energy (year t) in kWh/a r: discount rate in % T: period of analysis in year

Notes:
 1) Equation (1) can be calculated either with a nominal or a real (adjusted for inflation of rate *i*) discount rate *r*. The cost variables C_t, DEP_t and RV have to be adapted accordingly. As a consequence two different LCoH values can be obtained, depending on the discount rate selected: the LCoH in nominal terms and the LCoH in real terms. The LCoH in nominal

INFO Sheet A01

terms is always larger than the one in real terms (as $r_{nominal} > r_{real}$, for i > 0). Further information concerning this topic is available in [2].

2) All costs are net costs (excluding VAT).

3) The final energy is the energy reaching the final consumer's door (here household); typically the gas or oil consumption of the boiler in the household.

Different LCoH values are achieved for different system boundaries

Three different LCoH values are calculated by IEA-SHC Task 54 considering only the solar part, only the conventional part and the overall solar assisted heating system (Figure 1) distinguished by using the following acronyms:

- LCoH_{sol,fin}: levelized cost of the heat substituted (saved) by the solar part of the solar assisted heating system. It is the main indicator of the Task and the methodology to calculate it is described in the details in the following sections. It allows for the comparison of different solar thermal system designs and technologies as part of the overall solar assisted heating system.
- LCoH_{ov,fin}: levelized cost of the heat generated by the solar assisted heating system. The overall heating system is considered here. This enables a comparison of the solar assisted heating system with other heating technologies.
- LCoH_{conv,fin}: levelized cost of the heat supplied by the conventional part of the solar assisted heating system. It can be easily derived from the data used to calculate the LCoH_{sol,fin} and the LCoH_{ov,fin}. The last section also clarifies the method to calculate it.

The index *fin* stands for final energy, considered at the denominator of the LCoH equation, to differentiate with other studies, using the solar collector yield or the useful (solar) heat for instance.

Figure 1. Schematic illustration of the terms describing the systems/system parts as considered in the Info Sheet.

INFO Sheet A01

Main assumptions for solar thermal applications

This section focuses on the cost of the heat substituted by solar thermal energy (LCoH_{sol,fin}). All cost variables (I_0 , S_0 , C_t , DEP_t and RV) only refer to the components dedicated to solar thermal heat production and integration, mainly collectors, buffer store, pumps, heat exchangers, pipe works, control unit and their installation.

The calculation of the LCoH_{sol,fin} requires the definition of a reference conventional heating system (Figure 1). This conventional reference system is a heating system which would supply the same amount of energy to the end user as the solar assisted heating system, but without solar assistance. It is needed to calculate I_0 and the saved final energy E_t .

- Initial investment (I₀):
 - The cost of the storage from the conventional reference heating system and the associated installation costs *SC* should be subtracted from I_0 if applicable.
 - In case of building integrated solar thermal systems both for new buildings or building renovation, the cost of the building component (roof or wall section) substituted with solar thermal collectors and the associated installation costs should be subtracted from I_0 if applicable.
 - The size of the storage in the conventional reference heating system strongly depends on the application. Some guidelines might be used, as [3] for domestic hot water systems for instance.
- Subsidies and incentives (S₀):
 - The user might decide to include or not subsidies and other incentives in the calculation. In Task 54, subsidies are not considered as they vary from country to country.
- Operation and maintenance costs (*C*_t):
 - $\circ~C_t = O_t + M_t$ where O_t and M_t respectively corresponds to the operation and maintenance costs.
 - It is recommended to use a single fixed value for O_t and M_t (O and M):

 $C_t = O + M$

- Operation costs (0) correspond to the power consumption of the pump and controller and depend on the electricity price, different from country to country. The running time of the pump can only be determined with numerical simulations.
- For refined calculations, it is possible to apply an electricity price index increase different from the inflation. In this case it is necessary to adjust the index for inflation if the cost variables are given in constant euros.
- $_{\odot}$ Usually 0.01 \cdot I_{0} < M < 0.02 \cdot I_{0} [4]. For a more detailed analysis, the values given in [5] might also be used.

INFO Sheet A01

- Corporate tax rate (TR) and asset depreciation (DEP_t):
 - Only apply to the industrial and commercial sectors. For the residential sector one should take $TR = DEP_t = 0$.
- Residual value (RV):
 - For residential solar thermal applications, the residual value is considered equal to zero: RV = 0. For the industrial and commercial sectors however positive values might be used.
 - To calculate *RV*, one should compare the period of analysis (*T*) and the technical lifetime of the different components. Each component having a different technical lifetime, its replacement should be taken into consideration when calculating *RV*. Typical values for assessing the technical lifetime of components might be found in [5] and [6].
- Saved final energy (E_t):
 - To allow for the comparison between different solar thermal technologies and system designs for a given reference case, the saved final energy should be used here and not the solar energy yield.

Following [3],
$$E_t = E_{conv}^{ref} - E_{aux} = \frac{Q_{conv,net}^{ref}}{\eta_{conv}^{ref}} - \frac{Q_{aux,net}}{\eta_{aux}} = \frac{Q_d + Q_{l_conv}^{ref}}{\eta_{conv}^{ref}} - \frac{Q_{aux,net}}{\eta_{aux}}$$

Where:

 E_{conv}^{ref} : gross (final) energy demand of the conventional (reference) heating system in kWh/a E_{aux} : gross (final) auxiliary energy demand of the solar heating system in kWh/a

 Q_d : total useful heat demand in kWh/a

 $Q_{l,conv}^{ref}$: heat losses of the heat storage of the conventional (reference) heating system in kWh/a η_{conv}^{ref} : annual utilisation ratio¹ of the heater of the conventional (reference) heating system

 $Q_{conv,net}^{ref}$: net energy demand of the conventional heating system in kWh/a

 $Q_{aux,net}$: net energy demand of the solar heating system delivered by the auxiliary heater in kWh/a

 η_{aux} : annual utilisation ratio of the auxiliary heater of the solar heating system

- η_{conv}^{ref} and η_{aux} are highly dependent on the type of heater and on the operating conditions (notably winter vs. summer mode). However for practical reasons, $\eta_{conv}^{ref} = \eta_{aux}$ as well as a single yearly value should be considered. Values for η_{conv}^{ref} will be fixed for the solar assisted heating systems defined in Task 54, depending on the country and the type of
 - Following these assumptions:

system investigated.

$$E_t = \frac{Q_d + Q_{l,conv}^{ref} - Q_{aux,net}}{\eta_{conv}^{ref}}$$

¹ The annual utilisation ratio takes into consideration the steady-state efficiency of the heater as well as cyclic effect during transient phases and standby losses. Indicative values are given in [4] and [7] for instance.

INFO Sheet A01

- Q_d and $Q_{aux,net}$ might be determined with a simulation of the solar thermal system. $Q_{l,conv}^{ref}$ might be estimated either theoretically, for instance according to [3], or by means of a second simulation where the solar thermal loop is turned off. In the latter case, one should not forget to adapt the size of the heat storage.
- Simulations normally always estimate E_1 . A correction factor might be applied to the subsequent E_t (t = [2..T]) to take into consideration the ageing of the system. Unfortunately, only few analyses are available on the degradation rate of solar thermal systems. Experience shows however that each system should be considered specifically as there is so far no general criterion applying to this issue.
- Discount rate (r):
 - The discount rate is normally taken equal to the weighted average cost of capital (WACC). For single-family house systems, the total system costs are usually paid up front. In this case, r = 0 (real discount rate).
 - The nominal discount rate is derived from the real one with the relationship $r_{nominal} = r_{real} \cdot (1 + i) + i$, where *i* is the inflation rate.
- Period of analysis (T):
 - It is usually equal to the expected technical lifetime of the solar thermal system. This value is country and system dependent. For domestic systems for instance, 20 to 25 years in Germany and 25 years in Switzerland are commonly considered. In Denmark, 30 to 35 years are standard for large solar heating plants.

Under the assumptions described in this section, equation (1) can be simplified as follows for residential applications:

$$LCoH = \frac{I_0 + \sum_{t=1}^{T} C_t}{\sum_{t=1}^{T} E_t}$$

Where:

LCoH: levelized cost of heat in €/kWh I_0 : initial investment in € C_t : operation and maintenance costs (year t) in €/a

 E_t : final energy (year t) in kWh/a T: period of analysis in year

Cost of the heat substituted by solar thermal energy (LCoH_{sol,fin}) vs. cost of the heat generated by the solar assisted heating system (LCoH_{ov,fin})

The methodology described in the previous section allows the calculation of the levelized cost of the heat which is substituted by solar energy ($LCOH_{sol,fin}$). A similar approach was previously applied in [8] and [9], with some differing assumptions however, which do not allow a direct comparison of the results between the studies. The indicator $LCoH_{sol,fin}$ is sufficient to compare different solar thermal technologies and system designs with each other. However to compare a solar assisted heating system with other heating technologies (heat pump, wood pellets boiler, etc.) the levelized cost of the heat generated by the overall

(2)

INFO Sheet A01

solar assisted heating system has to be calculated ($LCOH_{ov,fin}$). To do so the methodology described above for the calculation of each term of the LCOH equation has to be adapted as described in Table 1.

The calculation of the cost of the heat supplied by the conventional part of the solar assisted heating system (LCoH_{conv,fin}) could be useful for the comparison of different back-up technologies associated with a given solar thermal system. It was not the focus of IEA-SHC Task 54 to carry out this comparison, therefore the LCoH_{conv,fin} is given as additional information. The LCoH_{conv,fin} is obtained by subtracting the terms of the LCoH_{sol,fin} to the terms of the LCoH_{out,fin} in the LCoH equation (I_0 , C_t and E_t).

Table 1. Definition of the different	terms in the LCoH equation (1,) for LCoH _{sol,fin} and LCoH _{ov,fin}
, , ,,		2 300,jill 00,jill

D	Cost of the heat substituted by solar thermal	Cost of the heat generated by the solar assisted
Parameter	energy (LCoH _{sol,fin})	heating system (LCoH _{ov,fin})
I ₀	Investment costs for the solar part of the solar assisted heating system. Investment costs for the storage of the reference conventional heating system SC are deducted	Investment costs for the overall solar assisted heating system
C_t	O&M costs for the solar part of the solar assisted heating system	O&M costs for the solar assisted heating system; the costs of the energy used by the auxiliary heater need to be integrated here
DEP_t	Depreciation of the solar part of the solar assisted heating system	Depreciation of the solar assisted heating system
S_0	Subsidies for the solar part of the solar assisted heating system	All subsidies given to build the solar assisted heating system
RV	Residual value of the solar part of the solar assisted heating system	Residual value of the solar assisted heating system
E_t	Saved final energy ($\mathrm{E_{conv}^{ref}}-E_{aux}$)	Final energy demand of the reference conventional heating system (\mathbf{E}_{conv}^{ref})

References

[1] Baez, M.J., Larriba Martínez, T., 2015. "Technical Report on the Elaboration of a Cost Estimation Methodology", No. D.3.1. Creara, Madrid, Spain.

[2] Short, W., Packey, D.J., Holt, T., 1995. *"A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies"*, No. NREL/TP-462-5173. National Renewable Energy Laboratory (NREL), Golden, Colorado, USA.

[3] CEN, 2012. "EN 12977-2:2012 Thermal solar systems and components – Custom built systems – Part 2: Test methods for solar water heaters and combisystems". European Committee for Standardization (CEN), Brussels, Belgium.

[4] VDI, 2014. "VDI 6002, Blatt 1 - Solare Trinkwassererwärmung Allgemeine Grundlagen Systemtechnik und Anwendung im Wohnungsbau". Verein Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[5] VDI, 2012. "VDI 2067, Blatt 1 - Wirtschaftlichkeit gebäudetechnischer Anlagen Grundlagen und Kostenberechnung". Verein Deutscher Ingenieure (VDI), Düsseldorf, Germany.

[6] Suter, J.-M., Kovács, P., Hausner, R., Visser, H., Peter, M., 2003. "Durability and reliability of solar combisystems", in: Weiss, W. (Ed.), *Solar Heating Systems for Houses - A Design Handbook for Solar Combisystems*. Solar Heating and Cooling Executive Committee of the International Energy Agency (IEA), London, UK, pp. 163–190.

INFO Sheet A01

[7] ASHRAE, 2008. "2008 ASHRAE handbook: heating, ventilating, and air-conditioning systems and equipment." American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Atlanta, USA.

[8] Mauthner, F., Herkel, S., 2016. "*Technology and demonstrators - Technical Report Subtask C – Part C1*". AEE Intec, Gleisdorf, Austria.

[9] IEA-SHC, 2016. "Solar Heat Worldwide". URL: http://www.iea-shc.org/solar-heat-worldwide (Accessed 10.14.2016).

[10] Veynandt, F., Ramschak, T., Louvet, Y., Köhl, M., Fischer, S., 2017. "Info Sheet A13: *LCoH calculation method: comparison between Task 54 and Solar Heat WorldWide"*. IEA-SHC Task 54. URL: http://task54.iea-shc.org/.

7

¹ To avoid confusion with the results of other works ([1], [8], [9]) also using the notion of LCoH for solar thermal systems, new acronyms were introduced in this Info Sheet. As previous studies have considered different assumptions for the definition of the terms of the LCoH equation, it does not make sense to compare the values they obtained with the LCoH_{sol,fin}, LCoH_{conv,fin} and LCoH_{ov,fin} values defined here. A detailed explanation of the differences between the approaches chosen in the framework of IEA-SHC Task 54 and in the Solar Heat Worldwide report [9] can be found in Info Sheet A13 [10].

Anhang M: IEA SHC Task 54 Info sheet Conventional Reference System Germany

Conventional Reference System Germany

INFO Sheet A07

Description:	Description of the conventional reference system for domestic hot water preparation and space heating in Germany
Date:	30.06.2019 V8: system lifetime 25 y (boiler 15 y)
Authors:	Stephan Bachmann, Stephan Fischer, Bernd Hafner
Download possible at:	http://task54.iea-shc.org/

Introduction

This document describes the conventional reference system for domestic hot water preparation and space heating in Germany. The system is modelled with TRNSYS to calculate the fuel consumption and electric energy needed to provide the required domestic hot water and space heating. Using this result the levelized costs of heating (LCOH) for the conventional reference system for Germany is calculated using eq. 1 and the reference costs for the investment of the system, installation costs, fuel and electricity costs.

Hydraulic Scheme of the System

Levelized Cost of Heat (LCoH)

LCoHc without VAT	0.113€
-------------------	--------

1

Conventional Reference System Germany

INFO Sheet A07

Details of the system

Location	Germany, Würzburg
Type of system	Domestic hot water and space heating system
Load information including	
 heat demand space heating 	9090 kWh/a /1/
- tapping profile	EU-tapping profile L (4254 kWh/a) /2/
- store heat losses	751 kWh
- tapping temperature	55°C according EU tapping profile
 average inlet temperature of cold water 	10°C
- cold water inlet temperature amplitude	ок
heat store parameters	TRNSYS-type 340
heat store volume	150
Store inner diameter	0.5 m
Rel. height of boiler inlet	0.8
Rel. height of boiler outlet	0.04
Rel. height of sensor for boiler	0.7
set temperature for DHW	57.5 °C +- 2.5 K
overall heat loss capacity rate of store	2.71 W/K
effective vertical conductivity	1.2 W/(mK)
Heat transfer capacity rate of HX	$(kA)_{WT} = 82,3 \cdot \dot{m}^{0,185} \cdot \vartheta_m^{0,482} [W/K]$
Volume HX	61
ambient temperature of heat store	15 °C
Boiler /3/	
Type of auxiliary heating	Gas condensing boiler
boiler capacity	19 kW
Mass flow	1090 kg/h (∆T = 15 K)
Efficiency factor of boiler	0.9
Controller	
electric power of controller	3 W
Operating hours of controller per year	8760 h
Electric consumption of controller per year	26.3 kWh
electric power of pump	55 W
Operating hours of pump (hot water + space heat.)	4041 h
electric consumption of pump per year	222 kWh
Investment costs	
Boiler and heat store	4000 € /3/
Exhaust system	500 € /3/
Installation	1000 € /3/
Installation material	1000 € /3/
Boiler (exchange after 15 y)	2333 € (= 2/3 of new boiler 3500 €)
Installation new boiler	360 €
Installation material new boiler	100 €
Overall investment costs I ₀	9293 €

Conventional Reference System Germany

INFO Sheet A07

Operation costs per year	
Heat demand hot water	5009 kWh/a
Fuel demand hot water	5566 kWh/a
Heat demand space heating	9090 kWh/a /1/
Fuel demand space heating	10100 kWh/a
Fuel demand hot water + space heating Et	15666 kWh/a
Cost per kWh fuel	0.066 € kWh/a /4/
Fuel costs	1034 €/a
Electricity demand	249 kWh/a
cost per kWh electric energy	
(demand of 5000 kWh/a) /4/	0.254 €
electricity costs	63 €/a
Maintenance costs	200 €/a /3/
Gas meter	130 €/a /3/
yearly operation and maintenance cost Ct	1427€
type of incentives	None
amount of incentives	0€
lifetime of system	25 year
discount rate r	0%
inflation rate	0%
Corporate tax rate TR	0%
asset depreciation (year t) DEP _t	0€
subsidies and incentives (year t) St	0€
Residual value RV	0€
Saved final energy (year t) E _t	0 kWh
Discount rate r	0%
VAT rate	19 %

Calculation of levelized cost LCoH:

$$LCoH = \frac{I_0 - S_0 + \sum_{t=1}^{T} \frac{C_t (1 - TR) - DEP_t \cdot TR}{(1 + r)^t} - \frac{RV}{(1 + r)^T}}{\sum_{t=1}^{T} \frac{E_t}{(1 + r)^t}}$$

Where:

LCoH: levelized cost of heat in €/kWh I_0 : initial investment in € S_0 : subsidies and incentives in € C_t : operation and maintenance costs (year t) in € *TR*: corporate tax rate in % DEP_t : asset depreciation (year t) in \in RV: residual value in \in E_t : saved final energy (year t) in kWh r: discount rate in % T: period of analysis in year (1)

Conventional Reference System Germany

INFO Sheet A07

References

- /1/ EN 12977-2:2012: Thermal solar systems and components Custom built systems Part 2: Test methods for solar water heaters and combisystems
- /2/ COMMISSION DELEGATED REGULATION (EU) No 812/2013, ANNEX VII
- /3/ E-Mail from Bernd Hafner, dated 13.06.2016
- /4/ www.check24.com, Würzburg reference costs, Sept. 2016

/5/ Y. Louvet, S. Fischer et. al. IEA SHC Task 54 Info Sheet A. 2: Guideline for levelized cost of heat (LCOH) calculations for solar thermal applications", March 2017. Download: <u>http://task54.iea-shc.org/</u>

/6/ Y. Louvet, S. Fischer et.al. Entwicklung einer Richtlinie f
ür die Wirtschaftlichkeitsberechnung solarthermischer Anlagen: die LCOH Methode. 27. May 2017. Symposium Thermische Solarenergie, Bad Staffelstein.

4

Anhang N: IEA SHC Task 54 Info sheet Reference solar domestic hot water system Germany

Reference solar domestic hot water system Germany

INFO Sheet A08

Description:	Definition of the reference solar domestic hot water (SDHW) system, Germany
Date:	30.06.2019 V8: lifetime 25 y (boiler 15 y)
Authors:	Stephan Bachmann, Stephan Fischer, Bernd Hafner
Download possible at:	http://task54.iea-shc.org/

Introduction

This document describes the reference solar domestic hot water (SDHW) system for domestic hot water preparation and space heating in Germany. The system is modelled with TRNSYS to calculate the fuel consumption and electric energy needed to provide the required domestic hot water and space heating as well as the substituted fuel provided by the SDHW system. Using this result the levelized costs of heating (LCOH) for the substituted fuel is calculated using eq. 1 and the reference costs for the investment of the system, installation costs, fuel and electricity costs.

Hydraulic Scheme of the System

Levelized Cost of Heat (LCoH)

LCoHs solar part without VAT	0.113€
LCoHc conventional part without VAT	0.121€
LCoHo complete system without VAT	0.120€

1

Details of the system

Location	Germany, Würzburg
Type of system	Solar domestic hot water (SDHW) system
Weather data including	test reference year (TRY Würzburg)
- hemispherical irradiance on horizontal surface	$\Sigma G_{hem,hor} = 1118.8 \text{ kWh/(m2 a)}$
- beam irradiance on horizontal surface	$\Sigma G_{\text{beam,hor}} = 550.1 \text{ kWh/(m2 a)}$
- diffuse irradiance on horizontal surface	$\Sigma G_{diff,hor} = 568.7 \text{ kWh/m}^2 \text{ a}$
- ambient temperature	$T_{amb,av} = 9.0 \ ^{\circ}C$
in hourly values	
Collector orientation	
 Collector tilt angle to horizontal 	45 °
- South deviation of collector	south = 0°
- ground reflectance	0.2
 resulting hemispherical irradiance on tilted 	
surface	$\Sigma G_{hem,tilt} = 1229.8 \text{ kWh/(m2 a)}$
Load information including	
 heat demand space heating 	9090 kWh/a /1/
- tapping profile	EU-tapping profile L (4254 kWh/a) /2/
- tapping temperature	55°C according EU tapping profile
 average inlet temperature of cold water 	10°C
- cold water inlet temperature amplitude	ОК
Collector information based on gross area	TRNSYS-type 132
number of collectors	2
collector area of one collector	2.5 m ²
Maximum collector efficiency	0.684
incidence angle modifier for direct irradiance bo	0.2
incidence angle modifier for diffuse irradiance	0.91
Kd	
linear heat loss coefficient a1	3.51 W/(m ² K)
2nd order heat loss coefficient a ₂	0.011 W/(m ² K ²)
effective heat capacity c _{eff}	8.0 kJ/(m ² K)
heat store parameters	TRNSYS-type 340
heat store volume	300 1
auxiliary volume for DHW preparation	150
Store inner diameter	0.6 m
Rel, height of solar inlet	0.4
Rel, height of solar outlet	0.04
Rel, height of auxiliary inlet	0.8
Rel, height of auxiliary outlet	0.5
Rel, height of sensor for collector loon	0.2
Rel, height of sensor for auxiliary heating	0.7
set temperature for DHW	57.5 °C +- 2.5 K
Rel. height of sensor for collector loop Rel. height of sensor for auxiliary heating set temperature for DHW	0.2 0.7 57.5 °C +- 2.5 K

overall heat loss capacity rate of store	3.56 W/K
effective vertical conductivity	1.2 W/(mK)
Heat transfer capacity rate of solar loop HX	$(kA)_{WT,Sol} = 102,7 \cdot \dot{M}^{0,226} \cdot 9_m^{0,550} [W/K]$
Heat transfer capacity rate of auxiliary loop HX	$(kA)_{WT.Aux} = 82.3 \cdot \dot{m}^{0.185} \cdot 9_m^{0.482} [W/K]$
Volume solar loop HX	101
Volume auxiliary loop HX	61
maximum heat store temperature	90 °C
ambient temperature of heat store	15 °C
Solar thermal controller and hydraulic piping	
total pipe length of collector loop	20 m
inner diameter of collector loop pipe	16 mm
ambient temperature of heat store	15 °C
Mass flow collector loop	40 kg/(m²h), constant
temperature difference collector start-up	6 K
temperature difference collector shut-off	4 K
electric power of solar thermal controller	3 W
Operating hours of solar thermal controller per	8760 h
year	
Electric consumption of controller per year	26.3 kWh
electric power of solar loop pump	40 W
Operating hours of solar loop pump	1277 h (L-profile), 929 h (M-profile)
electric consumption of solar loop pump per	51.1 kWh (L-profile), 37.2 kWh (M-profile)
year	
conventional back up system	
Type of auxiliary heating	Gas condensing boiler
boiler capacity	19 kW
Mass flow	1090 kg/h (∆T = 15 K)
Efficiency factor of boiler	0.9
electric power of controller	3 W
Operating hours of controller per year	8760
Electric consumption of controller per year	26.3 kWh
electric power of pump	55 W
Operating hours of pump (aux. heating + space	3999 h
heating)	
electric consumption of pump per year	220 kWh
Investment costs solar thermal system	
solar thermal collector, heat store, solar	3600 € /5/
thermal controller solar thermal hydraulic	
components	
Installation	1250 € /5/
Credit conventional heat store and share of	-1000 €
installation	

	-
Overall investment costs solar thermal part I ₀	3850 €
Investment costs conventional part	
Boiler and heat store	4000 € /3/
Exhaust system	500 € /3/
Installation	1000 € /3/
Installation material	1000 € /3/
Boiler (exchange after 15 y)	2333 € (= 2/3 of new boiler 3500 €)
Installation new boiler	360 €
Installation material new boiler	100 €
Overall investment costs conventional part I ₀	9293 €
Overall investment costs complete system I ₀	13143 €
Operation costs conventional part per year	
Heat demand hot water	3002 kWh/a
Fuel demand hot water	3335 kWh/a
Heat demand space heating	9090 kWh/a /1/
Fuel demand space heating	10100 kWh/a
Fuel demand hot water + space heating Et	13435 kWh/a
Cost per kWh fuel (gas)	0.066 € kWh/a /4/
Fuel costs	887 €/a
Electricity demand	246 kWh/a
cost per kWh electric energy /4/	0.254 €
electricity costs	63 €/a
Maintenance costs	200 €/a /3/
Gas meter	130 €/a /3/
vearly operation and maintenance cost	1279€
conventional part Ct	
Operation costs solar part per year	
Electricity demand	83 kWh/a
cost per kWh electric energy /4/	0.254 €
electricity costs	21 €/a
Maintenance costs (I ₀ * 2%)	100 €/a
yearly operation and maintenance cost solar	121 €/a
part Ct	
fractional energy savings with credit for 150I-	40 %
store, UA=2,05 W/K	
Saved final energy (year t) Et	2226 kWh
type of incentives	None
amount of incentives	0€
lifetime of system	25 year
discount rate r	0%
inflation rate	0%
Corporate tax rate TR	0%
asset depreciation (year t) DEPt	0€

subsidies and incentives (year t) S_t (considered	0€
in Io)	
Residual value RV	0€
Discount rate r	0 %
VAT rate	19 %

Calculation of levelized cost LCoH:

$$LCoH = \frac{I_0 - S_0 + \sum_{t=1}^{T} \frac{C_t (1 - TR) - DEP_t \cdot TR}{(1 + r)^t} - \frac{RV}{(1 + r)^T}}{\sum_{t=1}^{T} \frac{E_t}{(1 + r)^t}}$$

Where:

LCoH: levelized cost of heat in €/kWh I_0 : initial investment in € S₀: subsidies and incentives in € C_t : operation and maintenance costs (year t) in € *TR*: corporate tax rate in % DEP_t : asset depreciation (year t) in \in RV: residual value in \in E_t : saved final energy (year t) in kWh r: discount rate in % T: period of analysis in year

Annex: Comparison to figures published in Solar Heat Worldwide

To compare the above presented LCoHs based on the saved final energy with the $LCoH_{SHWW}$ presented in Solar Heat World Wide based on the collector yield the following table is presented

Collector yield (year t) Et	2288 kWh
LCoH _{sHww} solar part without VAT	0.105€

References

- /1/ EN 12977-2:2012: Thermal solar systems and components Custom built systems Part 2: Test methods for solar water heaters and combisystems
- /2/ COMMISSION DELEGATED REGULATION (EU) No 812/2013, ANNEX VII
- /3/ E-Mail Bernd Hafner, dated 13.06.2016
- /4/ www.check24.com Würzburg reference costs, Sept. 2016
- /5/ mean values of eveluated invoices supplied by Bafa

/6/Y. Louvet, S. Fischer et. al. IEA SHC Task 54 Info Sheet A. 2: Guideline for levelized cost of heat (LCOH) calculations for solar thermal applications", March 2017. Download: <u>http://task54.iea-shc.org/</u>

/7/Y. Louvet, S. Fischer et.al. Entwicklung einer Richtlinie für die Wirtschaftlichkeitsberechnung solarthermischer Anlagen: die LCOH Methode. 27. May 2017. Symposium Thermische Solarenergie, Bad Staffelstein.

Anhang O: IEA SHC Task 54 Info sheet Reference solar combi system Germany

Reference solar combi system Germany

INFO Sheet A09

Description:	Definition of reference solar combi system, Germany
Date:	31.05.2018 V7: lifetime 25 y (boiler 15 y)
Authors:	Stephan Bachmann, Stephan Fischer, Bernd Hafner
Download possible at:	http://task54.iea-shc.org/

Introduction

This document describes the reference solar combisystem for domestic hot water preparation and space heating in Germany. The system is modelled with TRNSYS to calculate the fuel consumption and electric energy needed to provide the required domestic hot water and space heating as well as the substituted fuel provided by the combisystem. Using this result the levelized costs of heating (LCOH) for the substituted fuel is calculated using eq. 1 and the reference costs for the investment of the system, installation costs, fuel and electricity costs.

Hydraulic Scheme of the System

Levelized Cost of Heat (LCoH)

LCoHs solar part without VAT	0.178€
LCoHc conventional part without VAT	0.127€
LCoHo complete system without VAT	0.137€

Reference solar combi system Germany

INFO Sheet A09

Details of the system

Location	Germany, Würzburg
Type of system	combisystem
Weather data including	test reference year (TRY Würzburg)
- hemispherical irradiance on horizontal surface	$\Sigma G_{hem,hor} = 1118.8 \text{ kWh}/(\text{m}^2 \text{ a})$
- beam irradiance on horizontal surface	$\Sigma G_{\text{beam,hor}} = 550.1 \text{ kWh/(m2 a)}$
- diffuse irradiance on horizontal surface	$\Sigma G_{diff,hor} = 568.7 \text{ kWh/m}^2 \text{ a}$
- ambient temperature	$T_{amb,av} = 9.0 \ ^{\circ}C$
in hourly values	
Collector orientation	
 Collector tilt angle to horizontal 	45 °
- South deviation of collector	south = 0°
- ground reflectance	0.2
 resulting hemispherical irradiance on tilted 	
surface	$\Sigma G_{hem,tilt} = 1229.8 \text{ kWh/(m2 a)}$
Load information including	
 heat demand space heating 	9090 kWh/a /1/
- tapping profile	EU-tapping profile L (4254 kWh/a) /2/
- store heat losses	2041 kWh
- tapping temperature	55°C according EU tapping profile
 average inlet temperature of cold water 	10°C
- cold water inlet temperature amplitude	ОК
Collector information based on gross area	TRNSYS-type 132
number of collectors	6
collector area of one collector	2.5 m ²
Maximum collector efficiency	0.684
incidence angle modifier for direct irradiance bo	0.2
incidence angle modifier for diffuse Irradiance	0.91
linear heat loss coefficient	3.51 W/(m²K)
2nd order heat loss coefficient	0.011 W/(m ² K ²)
effective heat capacity	8.0 kJ/(m²K)
heat store parameters	TRNSYS-type 340
heat store volume	800 I
auxiliary volume for DHW preparation	424 I
Store inner diameter	0.79
Rel. height of solar inlet	0.4
Rel. height of solar outlet	0.04
Rel. height of auxiliary inlet	0.9
Rel. height of auxiliary outlet	0.47
Rel. height of space heating inlet	0.2
Rel. height of space heating outlet	0.45
Pol boight of cold water inlet	0.05

INFO Sheet A09

Rel. height of hot water outlet	0.95
Rel. height of sensor for aux. charging	0.6
Rel. height of sensor for space heating	0.45
preheating	
Rel. height of sensor for collector loop	0.2
set temperature for DHW	62.5 °C
Temperature difference space heating preheat	4 K
on	
Temperature difference space heating preheat	2 K
off	
overall heat loss capacity rate of store	4.4 W/K
effective vertical conductivity	1.2 W/(mK)
Heat transfer capacity rate of solar loop HX	$(kA)_{WT,Sol} = 165.9 \cdot \dot{m}^{0.283} \cdot \vartheta_m^{0.524} [W/K]$
Heat transfer capacity rate of hot water HX	$(kA)_{WT,HW} = 75.8 \cdot \dot{m}^{0.252} \cdot 9_{m}^{1.026} [W/K]$
Volume solar loop HX	11.8
Volume hot water HX	38.5 l
maximum heat store temperature	90 °C
ambient temperature of heat store	15 °C
Solar thermal controller and hydraulic piping	
total pipe length of collector loop	20 m
inner diameter of collector loop pipe	20 mm
temperature difference collector start-up	6 K
temperature difference collector shut-off	4 K
electric power of solar thermal controller	3 W
Operating hours of solar thermal controller per	8760 h
year	
Electric consumption of controller per year	26.3 kWh
electric power of solar loop pump	55 W
Operating hours of solar loop pump	1073 h
Electric consumption of solar loop pump	59 kWh
electric consumption of other el. components	-
conventional system	
Type of auxiliary heating	Gas condensing boiler
boiler capacity	19 kW
Mass flow	1090 kg/h (delT = 15 K)
Efficiency factor of boiler	0.9
electric power of controller	3 W
Operating hours of controller per year	8760
Electric consumption of controller per year	26.3 kWh
electric power of pump	55 W
Operating hours of pump (aux. heating + space	3987 h
heating)	

INFO Sheet A09

	-				
electric consumption of pump per year	219 kWh				
Investment costs solar thermal system					
solar thermal collector, heat store, solar	8000 € /5/				
thermal controller solar thermal hydraulic					
components					
Installation	2000 € /5/				
Credit conventional heat store and share of	-1000€				
installation					
Overall investment costs solar thermal part I ₀	9000 €				
Investment costs conventional part					
Boiler and heat store	4000 € /3/				
Exhaust system	500 € /3/				
Installation	1000 € /3/				
Installation material	1000 € /3/				
Boiler (exchange after 15 y)	2333 € (= 2/3 of new boiler 3500 €)				
Installation new boiler	360 €				
Installation material new boiler	100 €				
Overall investment costs conventional part I ₀	9293 €				
Overall investment costs complete system I ₀	18293 €				
Operation costs conventional part per year					
Auxiliary heat demand hot water	3743 kWh/a				
Fuel demand hot water	4159 kWh/a				
Heat demand space heating	7506 kWh/a				
Fuel demand space heating	8340 kWh/a				
Fuel demand hot water + space heating Et	12499 kWh/a				
Cost per kWh fuel (gas)	0.066 € kWh/a /4/				
Fuel costs	825 €/a				
Electricity demand	246 kWh/a				
cost per kWh electric energy /4/	0.254 €				
electricity costs	62 €/a				
Maintenance costs	200 €/a /3/				
Gas meter	130 €/a /3/				
yearly operation and maintenance cost	1217€				
conventional part Ct					
Operation costs solar part per year					
Electricity demand	85 kWh/a				
cost per kWh electric energy /4/	0.254 €				
electricity costs	22 €/a				
Maintenance costs (I ₀ * 2%)	180 €/a				
yearly operation and maintenance cost solar	202 €/a				
part Ct					
fractional energy savings with credit for 150I-	20.2 %				

INFO Sheet A09

store, UA=2,05 W/K	
Saved final energy (year t) Et	3162 kWh
type of incentives	None
amount of incentives	0€
lifetime of system	25 year
discount rate r	0%
inflation rate	0%
Corporate tax rate TR	0%
asset depreciation (year t) DEP _t	0€
subsidies and incentives (year t) St (considered	0€
in I ₀)	
Residual value RV	0€
Discount rate r	0%
VAT rate	19 %

Calculation of levelized cost LCOH:

$$LCoH = \frac{I_0 - S_0 + \sum_{t=1}^{T} \frac{C_t (1 - TR) - DEP_t \cdot TR}{(1 + r)^t} - \frac{RV}{(1 + r)^T}}{\sum_{t=1}^{T} \frac{E_t}{(1 + r)^t}}$$
(1)

Where:

LCoH: levelized cost of heat in €/kWh I_0 : initial investment in € S_0: subsidies and incentives in € C_t : operation and maintenance costs (year t) in € TR: corporate tax rate in % DEP_t : asset depreciation (year t) in \in RV: residual value in \in E_t : saved final energy (year t) in kWh r: discount rate in % T: period of analysis in year

Annex: Comparison to figures published in Solar Heat Worldwide

To compare the above presented LCoHs based on the saved final energy with the LCoH_{SHWW} presented in Solar Heat World Wide based on the collector yield the following table is presented

Collector yield (year t) Et	4541 kWh
LCOH _{SHWW} solar part without VAT	0.124 €

INFO Sheet A09

References

- /1/ EN 12977-2:2012: Thermal solar systems and components Custom built systems Part 2: Test methods for solar water heaters and combisystems
- /2/ COMMISSION DELEGATED REGULATION (EU) No 812/2013, ANNEX VII
- /3/ E-Mail Bernd Hafner, dated 13.06.2016
- /4/ www.check24.com Würzburg reference costs, Sept. 2016
- /5/ mean values of evaluated invoices supplied by Bafa

/6/Y. Louvet, S. Fischer et. al. IEA SHC Task 54 Info Sheet A. 2: Guideline for levelized cost of heat (LCOH) calculations for solar thermal applications", March 2017. Download: <u>http://task54.iea-shc.org/</u>

/7/ Y. Louvet, S. Fischer et.al. Entwicklung einer Richtlinie f
ür die Wirtschaftlichkeitsberechnung solarthermischer Anlagen: die LCOH Methode. 27. May 2017. Symposium Thermische Solarenergie, Bad Staffelstein.

Anhang P: IEA SHC Task 54 Info sheet Production costs of a typical hot water store for domestic hot water application

Production costs of a typical hot water store for domestic hot water application

INFO Sheet Bx

Description:	Production costs of a typical hot water store for domestic hot water application
Date:	13.08.2019 V2
Authors:	Stephan Bachmann, Stephan Fischer
Download possible at:	http://task54.jea-shc.org/

Introduction

Within the frame of the German project "KoST" the production costs of a typical hot water store for domestic hot water application with a volume of 300 I were requested from different manufactures. The pricing pressure is quiet high for this type of stores. Therefore, only a few manufacturer are producing this type of store. Most of the smaller manufacturer gave up because they couldn't compete against the large enterprises. Besides, naming production costs is a quiet sensitive topic so only one manufacturer answered. Nevertheless, due to the high price pressure on the manufactures the presented values are quite representative for the market.

Setup of a typical hot water store for domestic hot water application

The following picture shows a typical hot water store for domestic hot water application. It is an enameled cylindrical steel tank with a volume of 300 to 400 liters and a diameter of 0,45 m to 0,65 m. The store is equipped with two immersed heat exchangers, one for the collector loop in the lower half and one for the auxiliary heater in the upper half. The heat exchangers are also made of enameled steel. The maximum operation pressure for the store is 6 bars, for the heat exchanger it is 10 bars. The maximum operation temperature is 90 °C. All enameled hot water stores are equipped with a sacrificial anode as additional protection against corrosion which is mostly installed at the top of the store. As a thermal insulation concept for stores with a volume of up to 400 l mostly a rigid foam insulation is used, which is firmly connected to the store. The connections are positioned at the mantle of the store. Besides the connections for the circulation (3/4''), an additional electrical heater (6/4'') at middle height and a flange (diameter 100 mm – 120 mm) for maintenance work. For mounting the temperature sensors at the store, mostly 2 immersion sleeves are welded into the storage tank.

Production process:

- 1. Cutting to length and press cut of the mantle sheet
- 2. Bending of the mantle sheet
- 3. Installation and tacking of the heat exchangers
- 4. Deep drawing of the dished boiler heads
- 5. Tacking of the mantel, the dished boiler heads, the connections and the sleeves

Production costs of a typical hot water store for domestic hot water application

INFO Sheet B<mark>x</mark>

- 6. Automatic welding of the mantle, the dished boiler heads, the connections and sleeves
- 7. Hydraulic pressure test
- 8. Enameling process
- 9. Finishing of the outside of the store
- 10. Laying in foam of the store
- 11. Packaging

Figure 1: Typical hot water store for domestic hot water application

Production costs of a typical hot water store for domestic hot water application

The following table shows the production costs $[\epsilon]$ of a typical hot water store for domestic hot water application with a volume of 300 I. The total costs are 245 ϵ .

Production costs of a typical hot water store for domestic hot water application

INFO Sheet B<mark>x</mark>

Tank with solar heat exchanger [€]	145
Auxiliary heat exchanger [€]	20
Rigid foam and plastic shell [€]	25
Small parts (flange cap, sealing, screws,) [€]	25
Personnel costs [€]	30
Sum []	245

The costs of the enameling of the store (included in the costs for the tank in the table above) are divided in 20 \in each for the material itself and the process. The costs for the packaging are 30 \in . If the rigid foam is combined with a steel shell instead of a plastic shell the costs are about 20 \in higher. For the depletion of the production machine 100 \in per store have to be assumed.

This results in production costs of approx. 1 €/I storage capacity. This value is valid for hot water stores up to 1000 I.

Retail prices

Within the frame of the German project "KoST" the retail prices for typical hot water store for domestic hot water application with a volume of 300 I were determined. Therefore about 100 invoices of the years 2015 and 2016 of the German subsidy program ("Marktanreizprogramm") for solar thermal systems were evaluated. The retail prices for the stores differ from \in 526,- to \in 1224,- which are 175 to 400 % of the production costs.

Acknowledgements

The research project "Cost reduction in solar heat by standardized components and interfaces", acronym "KoST", is funded by the German Federal Ministry for Economic Affairs and Energy by resolution of the German Parliament and managed by Project Management Jülich (PTJ) under grant number 0325860A and financially supported by the participating industries. The author gratefully acknowledges this support and take the responsibility for the contents of this publication.

Anhang Q: IEA SHC Task 54 Info sheet Production costs of combistores for solar combisystems

Production costs of combistores for solar combisystems INFO Sheet B<mark>x</mark>

Description:	Production costs of combistores for solar combisystems
Date:	13.08.2019 V2
Authors:	Stephan Bachmann, Stephan Fischer
Download possible at:	http://task54.iea-shc.org/

Introduction

Within the frame of the German project "KoST" the production costs of a typical combistore with 2 immersed heat exchangers for the solar loop and hot water preparation with a volume of 750 l were requested from different manufactures. The pricing pressure is quiet high for this type of stores. Therefore, only a few manufacturers are producing this type of store. Besides, naming production costs is a quiet sensitive topic so only two manufacturer answered. Nevertheless, due to the high price pressure on the manufactures the presented values are quite representative for the market.

Setup of a typical combistore

The following figure 1 shows a typical combistore with 2 immersed heat exchangers for the solar loop and hot water preparation. It is a cylindrical steel tank with a volume of 500 l to 1000 l and a diameter of the tank of 0.65 m to 0.85 m (without insulation). The store is equipped with two immersed heat exchangers, one for the collector loop in the lower half and one for hot water preparation. This heat exchanger is mounted from the bottom to the top of the store to ensure stratified discharging of the store. It is a corrugated pipe made of stainless steel for hygienic reasons. The maximum operation pressure for the store is 3 bars, for the solar heat exchanger it is 10 bars and for the hot water heat exchanger it is 6 bars. The maximum operation temperature is 90 °C. As a thermal insulation concept for stores with a volume of more than 500 l mostly a removable polyester fiber fleece is used so that the store fits through standard doors. The connections are positioned at the mantle of the store. Besides the connections for the solar loop and cold and hot water (dimension 1") there are connections for the auxiliary charging and the space heating system (1" up to 1 %") For mounting the temperature sensors at the store, mostly a vertical terminal strip is used, which is mounted from the bottom to the top of the store use welded immersion sleeves.

Production process:

- 1. Cutting to length and press cut of the mantle sheet
- 2. Bending of the mantle sheet
- 3. Installation and tacking of the heat exchangers
- 4. Deep drawing of the dished boiler heads
- 5. Tacking of the mantel, the dished boiler heads, the connections and the sleeves

Production costs of combistores for solar combisystems INFO Sheet Bx

6. Automatic welding of the mantle, the dished boiler heads, the connections and sleeves

- 7. Hydraulic pressure test
- 8. Finishing of the outside of the store
- 9. Packaging

Figure 1: Typical combistore with two immersed heat exchangers

Production costs of combistores for solar combisystems

Table 1 shows the production costs [\in] of a typical cylindrical solar combistore made from steel with 2 immersed heat exchangers for hot water (corrugated pipe made of stainless steel) and the solar loop with a volume of about 750 l.

Table 1: Production costs of a typical combistore with 2 immersed heat exchangers and a volume of 750 I

	•
Tank with solar heat exchanger [€]	440
Hot water heat exchanger (30-40 I) [€]	150

Production costs of combistores for solar combisystems INFO Sheet B<mark>x</mark>

Insulation (100 mm polyester fiber fleece) [€]	110
Sum production costs [€]	700

The costs for the packaging are 30 \in . For the depletion of the production machine 150 \in per store have to be assumed. The personnel costs of 90 \in are included in the overall costs of 700 \in .

Table 2 shows the production costs [\in] of a typical cylindrical solar combistore of another manufacturer for the same kind of combistore with a volume of 825 l.

Table 2: Production costs of a typical combistore with 2 immersed heat exchangers and a volume of 825 I

Material costs without insulation [€]	380
Production costs of the insulation (100 mm polyester fiber fleece) [€]	100
Indirect material costs [€]	20
Personnel costs [€]	140
Production overhead costs [€]	85
Sum production costs [€]	725

The two tables show that the whole production costs of these stores are approx. $1 \in /I$. Buffer stores made of steel without immersed heat exchangers reach production costs of about $0.5 \in /I$.

Retail prices

Within the frame of the German project "KoST" the retail prices for typical combistores with a volume of 750 l to 800 l were determined. Therefore about 100 invoices of the years 2015 and 2016 of the German subsidy program ("Marktanreizprogramm") for solar thermal systems were evaluated. The retail prices for these combistores differ from \in 1215,- to \in 2419,- which are 160 to 310 % of the production costs.

Acknowledgements

The research project "Cost reduction in solar heat by standardized components and interfaces", acronym "KoST", is funded by the German Federal Ministry for Economic Affairs and Energy by resolution of the German Parliament and managed by Project Management Jülich (PTJ) under grant number 0325860A and financially supported by the participating industries. The author gratefully acknowledges this support and take the responsibility for the contents of this publication.

Anhang R: IEA SHC Task 54 Info sheet Cost reduction by performance improvement for solar domestic hot water systems

Cost reduction by performance improvement for solar domestic hot water systems

INFO Sheet Bx

Description:	Cost reduction by performance improvement for solar domestic hot water systems
Date:	12.08.2019 V3
Authors:	Stephan Bachmann, Stephan Fischer
Download possible at:	http://task54.iea-shc.org/

Introduction

To reduce the levelised cost of heat (LCoH) for solar thermal systems basically four different measures are possible (see also info sheet A01 "Guideline for levelized cost of heat(LCoH) calculations for solar thermal applications"):

- Reduction of investment costs
- Reduction of operation and maintenance costs
- Increase of operation time (lifetime of the system)
- Increase of the thermal performance

The impact of different measure of performance improvement on the levelized cost of the heat substituted (saved) by the solar part of the solar assisted heating system (LCoH_{sol,fin})are described in this info sheet based on possible performance improvements of the German solar domestic hot water reference system as defined in Info Sheet A08. It can be shown that the LCoH_{sol,fin} can decrease despite the investment costs are increasing.

Cost reduction by performance improvement for solar domestic hot water systems

The levelized cost of the heat substituted (saved) by the solar part of the solar assisted heating system (LCoH_{sol,fin}) of a solar domestic hot water system does not only depend on the investment costs of the solar system itself, but also on the system performance. Therefore it is possible that the LCoH_{sol,fin} decreases despite the investment costs are increasing. The following table shows the possible cost reduction by performance improvement of the German solar domestic hot water reference system as defined in Info Sheet A08. The change in the saved energy (saved fuel) were calculated using TRNSYS the calculation of the LCoH values followed the procedure from info sheet A01.

Cost reduction by performance improvement for solar domestic hot water systems

INFO Sheet Bx

Modification compared to solar domestic hot water reference system	change of investment costs [€]	f _{sav} [%]	Q _{save} (fuel) [kWh/a]	LCoH _{sol,fin} [ct]	LCoH _{fin,ov} [ct]	Reduction LCoH _{sol,fin} [%]
Conventional reference system (see A07)	-	0	0	-	11.3	-
SDHW reference system (see A08)	-	40	2226	11.3	12.2	0.0
heat loss rate store: 2,18 W/K (C- label)	50	43.1	2395	10.6	12.1	6.2
heat loss rate store: 1,56 W/K (B- label)	150	45.7	2539	10.2	12.0	9.7
heat loss rate store: 1,11 W/K (A- label)	280	47.5	2641	10.1	12.0	10.6
without death volume below Solar- Heat Exchanger	0	40.2	2235	11.2	12.1	0.9
improved collector	100	45.1	2508	10.3	12.1	8.8
Store B-label + improved collector	250	50.7	2818	9.5	11.9	15.9
collector area + 1m ² "	320	44.3	2464	11.0	12.2	2.7
improved collector + 1m ²	440	49.7	2761	10.1	12.1	10.6
high efficiency pump (7W) in collector loop	200	40	2226	11.3	12.2	0.0
with MCI "Convectrol"	10	41.3	2295	11	12.1	2.7
with MCI ^{IV}	25	42	2337	10.9	12.1	3.5
Store A-label , with MCI ^{VI} , 3 improved collectors ^I , without death volume below Solar Heat Exchanger	1255	61.9	3440	9.5	12.1	15.9
Store A-label, with MCl ^{VI} , 3 improved collectors ¹ , without death volume below Solar Heat Exchanger, + high efficiency pump, max. coll. temp. 95°C	1455	61.6	3425	9.6	12.1	15.0

Cost reduction by performance improvement for solar domestic hot water systems

INFO Sheet Bx

		-				
Store B-label, with MCI ^{VI} , 2 improved collectors ¹ , without death volume below Solar Heat Exchanger, max. coll. temp. 95°C	275	52	2889	9.4	12.0	16.8
Store B-label, with MCI ^{VI} , 3 improved collectors ^I , without death volume below Solar Heat Exchanger, max. coll. temp. 95°C	1290	59.6	3315	9.7	12.1	14.2
Store A-label, with MCI ^{VI} , 2 improved collectorsI, without death volume below Solar Heat Exchanger, max. coll. temp. 95°C	405	54.6	3034	9.1	12	19.5
Store A-label, with MCI ^{VI} , 3 improved collectorsI, without death volume below Solar Heat Exchanger, max. coll. temp. 95°C	1420	61.1	3399	9.7	12.1	14.2

The table shows that performance improvement of the solar domestic hot water system leads to lower values for LCoH_{sol,fin} even the investment costs are rising. This is e. g. valid for the improvement of the thermal insulation of the hot water store: Using a thermal insulation which leads to an energy label "A" according to the EU-regulation No. 812/2013 results in a reduction of the LCoH_{sol,fin} of about 10%. The energy label "A" can be reached by using conventional thermal insulation materials for stores with a volume of 300 l. Also a high reduction of the LCoH_{sol,fin} (about 9%) using a single task can be achieved by using an improved collector. A high reduction of the LCoH_{sol,fin} can be reached by the combination of several tasks. The combination of an improved collector and the extension of the collector area of 1 m² leads to a reduction of the LCoH_{sol,fin} of 10%. The combination of an improved thermal insulation of the store (label "B") and an improved collector leads to a reduction of the LCoH_{sol,fin} of about 16%. However the application of a high efficiency pump (although low priced) does not lead to a reduction of the LCoH_{sol,fin}.

The application of efficient micro circulation inhibitors (e. g. siphons made of stainless steel) is associated with relatively low additional investment costs even leads to a reduction of the LCoH_{sol,fin} of about 3,5 %.

The table also shows that the restriction of the collector temperature to max. 95°C influences the fractional energy savings or the LCoH_{sol,fin} in a very slightly way.

The highest reduction of the $LCoH_{sol,fin}$ can be achieved using the combination of a store with energy label "A" (without death volume below the solar loop heat exchanger, with MCI) and 2 improved collectors (19.5%). The application of 3 collectors is not reasonable, because the investment costs for 3 collectors are two high so the $LCoH_{sol,fin}$ doesn't decrease.

Cost reduction by performance improvement for solar domestic hot water systems

INFO Sheet Bx

Summary

It could be shown that despite a higher upfront investment the cost of the heat substituted (saved) by the solar part of the solar assisted heating system ($LCoH_{sol,fin}$) can be reduced in a range up to almost 20% by the use of more efficient components and strategies compared reference system. This underlines the fact that investment costs are not the only measure for cost reduction in moderate climates.

4

 $^{^{}i}$ eta_{0} = 0.72, a_{1} = 3.06 W/mK, a_{2} = 0.011 W/(mK^{2}), C_{\rm eff} = 8000.0 J/(Km^{2}), b_{0} = 0.09, IAM_dfu = 0.95

[&]quot; Gross area

iii Micro circulation inhibitor (MCI) made of plastics to push into the connections of the store (market available)

^{iv} Micro circulation inhibitor (MCI): siphons made of stainless steel, corrugated pipe, at all connections except cold water inlet and collector return

Anhang S: IEA SHC Task 54 Info sheet Cost reduction by performance improvement for solar combisystems

Cost reduction by performance improvement for solar combisystems

INFO Sheet B<mark>x</mark>

Description:	Cost reduction by performance improvement for solar combisystems
Date:	05.04.2019 V2
Authors:	Stephan Bachmann, Stephan Fischer
Download possible at:	http://task54.iea-shc.org/

Introduction

To reduce the levelised cost of heat (LCoH) for solar thermal systems basically four different measures are possible (see also info sheet A01 "Guideline for levelized cost of heat(LCoH) calculations for solar thermal applications"):

- Reduction of investment costs
- Reduction of operation and maintenance costs
- Increase of operation time (lifetime of the system)
- Increase of the thermal performance

The impact of different measure of performance improvement on the levelized cost of the heat substituted (saved) by the solar part of the solar assisted heating system (LCoH_{sol,fin})are described in this info sheet based on possible performance improvements of the German solar domestic hot water reference system as defined in Info Sheet A08. It can be shown that the LCoH_{sol,fin} can decrease despite the investment costs are increasing.

Cost reduction by performance improvement for solar combisystems

The LCoH_{sol,fin} (final solar levelized cost of heat) of a solar combisystem does not only depend on the investment costs of the solar system itself, but also on the system performance. Therefore it is possible that the LCoH_{sol,fin} decreases despite the investment costs are increasing. The following table shows the possible cost reduction by performance improvement of the German solar combisystem as defined in Info Sheet A09. The change in the saved energy (saved fuel) were calculated using TRNSYS the calculation of the LCoH values followed the procedure from info sheet A01.

Cost reduction by performance improvement for solar combisystems INFO Sheet B<mark>x</mark>

Modification compared to reference combisystem	change of investment costs [€]	f _{sav} [%]	Q _{save} (fuel) [kWh/a]	LCoH _{sol,fin} [ct]	LCoH _{fin,ov} [ct]	Reduction LCoH _{sol,fin} [%]
Conv. reference system (see A07)	-	0	0	-	11.3	-
Reference combisystem (see A09)	-	20.2	3162	17.8	13.7	-
Heat loss rate store: 3,05 W/K (C-label)	120	22.5	3525	16.1	13.6	9.6
Heat loss rate store: 2,18 W/K (B-label)	210	23.9	3749	15.3	13.6	14.0
Store volume 1000 l, auxiliary volume equal to reference system	240	22.2	3473	16.6	13.7	6.7
without death volume below Solar-Heat Exchanger	0	20.2	3168	17.7	13.7	0.6
improved collector	300	23.4	3662	15.8	13.6	11.2
Store C-label + improved collector	420	25.4	3982	14.7	13.5	17.4
Store B-label + improved collector	510	26.7	4182	14.2	13.5	20.2
Collector area + 2.5m ²	750	21.9	3422	17.7	13.9	0.6
improved collector + 2.5m ²	1100	24.9	3902	16.1	13.8	9.6
high efficiency pump (7W) in collector loop	200	20.2	3162	17.7	13.7	0.6
with MCI "Convectrol"	12	21.2	3326	16.9	13.7	5.1
with MCI ⁱⁱⁱ	30	21.9	3426	16.4	13.6	7.9
Store volume 1000 l (B-label), MCI [™] , improved coll. + 2,5 m ² , without death volume, high efficiency pump	1830	31.9	4996	13.2	13.6	25.8

Cost reduction by performance improvement for solar combisystems

INFO Sheet B<mark>x</mark>

Store volume 800 I (B-label), MCI ^{III} , improved coll. + 2,5 m ² , without death volume, high efficiency pump	1540	29.5	4620	13.9	13.6	21.9
Store volume 800 I (B-label), MCI ^{III} , improved coll., without death volume, high efficiency pump	740	28.1	4397	13.5	13.4	24.2
Store volume 800 I (B-label), MCI ^{III} , improved coll. + 2,5 m ² , without death volume, high efficiency pump, max. collector temp.: 95°C	1540	29.1	4564	14	13.6	21.3
Store volume 800 I (B-label), MCI ^{III} , improved coll., without death volume, high efficiency pump, max. collector temp.: 95°C	740	27.8	4348	13.6	13.4	23.6

The table shows that performance improvement of the solar combisystem leads to lower values for LCoH_{sol,fin} even the investment costs are rising. This is e. g. valid for the improvement of the thermal insulation of the combistore: Using a thermal insulation which leads to an energy label "B" according to the EU-regulation No. 812/2013 results in a reduction of the LCoH_{sol,fin} of about 14 %. The enlargement of the store volume from 800 I to 1000 I leads to a reduction of the LCoH_{sol,fin} of 6.7 %. Also a high reduction of the LCoH_{sol,fin} (about 11 %) using a single task can be achieved by using an improved collector. The highest reduction of the LCoH_{sol,fin} of about 20 %. The enlargement of the LCoH_{sol,fin} of about 20 %. The enlargement of the collector area is especially reasonable using an improved collector. This combination leads to a reduction of the LCoH_{sol,fin} of about 10 %.

On the other hand there are tasks like the application of a high efficiency pump which decrease the $LCoH_{sol,fin}$ very slightly (0.6 %).

The application of efficient micro circulation inhibitors (e. g. siphons made of stainless steel) is associated with relatively low additional investment costs even leads to a reduction of the LCoH_{sol,fin} of about 8 %.

The combination of a larger store volume (1000 I) without death volume below the solar heat exchanger, with B-label insulation, efficient micro circulation inhibitors, improved collectors with 1 additional collector and a high efficiency pump for the solar loop decreases the LCoH_{sol,fin} of about 26 %. However the placement of a cylindrical store with a real volume of 1000 I is quiet difficult. (Most of the stores with a nominal volume of 1000 I offer a real volume of only 900 I.) Using a store volume of 800 I and the reference collector area

Cost reduction by performance improvement for solar combisystems

INFO Sheet B<mark>x</mark>

instead leads to a reduction of the LCoH_{sol,fin} of about 24 %. The results show that it is advantage to use the reference collector area of 15 m² in combination with a store volume of 800 l. If the max. collector temperature is limited to 95°C (for collectors made from plastics) the reduction of the LCoH_{sol,fin} is about 0.5 % less.

Summary

It could be shown that despite a higher upfront investment the cost of the heat substituted (saved) by the solar part of the solar assisted heating system (LCoH_{sol,fin}) can be reduced in a range up to 25 % by the use of more efficient components and strategies compared reference system. This underlines the fact that investment costs are not the only measure for cost reduction in moderate climates.

4

 $^{^{}i}$ eta₀ = 0.72, a₁ = 3.06 W/mK, a₂ = 0.011 W/(mK²), C_{eff} = 8000.0 J/(Km²), b₀ = 0.09, IAMdfu = 0.95

 ⁱⁱ Micro circulation inhibitor (MCI) made of plastics to pull into the connections of the store (market available)
 ⁱⁱⁱ Micro Circulation Inhibitor (MCI): siphons made of stainless steel, corrugated pipe, at all connections except cold water and collector return

Anhang T: IEA SHC Task 54 Info sheet Standardised solar domestic hot water store

Standardised solar domestic hot water store

INFO Sheet B<mark>x</mark>

Description:	Requirements, preliminary considerations and definition of a standardized solar domestic hot water store for a typical solar domestic hot water system in Germany
Date:	12.08.2018 V3
Authors:	Stephan Bachmann, Stephan Fischer
Download possible at:	http://task54.iea-shc.org/

Introduction

Standardized components and interfaces can lead to significant cost reduction along the complete solar thermal value chain. The German project "KoST, Cost reduction in solar heat by standardized components and interfaces" which is carried out in the frame work of IEA SHC Task 54 addresses this subject and aims at a reduction of the solar heat production costs by about 40% to increase the competitiveness of solar thermal energy to other heat generation technologies. This goal is to be achieved primarily through the improvement of the thermal performance, the reduction of the production costs and the standardization of the main components such as collector, store, controller and mounting systems. In agreement with the project partners and on the basis of a detailed market research a proposal for a standardized solar domestic hot water store was elaborated. The market research contains detailed information on volumes, dimensions, store concept, thermal insulation, hydraulic connections, the mounting of the temperature sensors and the thermal performance for 30 hot water stores with nominal volumes of 162 l to 952 l. The data are based on manufacturer information from product catalogs as well as data from stores tested at the Research and testing center for solar thermal systems (TZS) of the Institute of Thermodynamics and Heat Transfer (ITW), University of Stuttgart.

Requirements and preliminary considerations

In agreement with the project partners of the German project "KoST" and on the basis of a detailed market research, the requirements for a standardized solar domestic hot water store have been developed.

- enameled steel tank
- volume of 300 liters
- thermal insulation concept: rigid foam, firmly connected to the store, energy efficiency class "B" according to Regulation (EU) No 812/2013, Annex II /1/

The requirements were defined based on the following preliminary considerations. An enameled steel tank was chosen because the costs are just about 2/3 compared to stainless steel tanks. A volume of 300 liters was chosen because this is a typical volume for single-family houses. Annual simulations have also shown that an increase in the storage volume using the same collector area does not offer any additional energy savings. As a thermal insulation concept, a rigid foam insulation was selected, which is firmly connected to

Standardised solar domestic hot water store

INFO Sheet Bx

the store. This has several advantages: Due to the low thermal conductivity of the rigid foam compared to other thermal insulation materials the insulation thickness can be reduced. In addition, it is ensured that the thermal insulation is optimally applied to the tank. Thus, a separate transport and the manual installation of the thermal insulation are not required. For stores up to a volume of 300 I using rigid foam a steel foot construction can be omitted too, as the rigid foam can take on this task. At the same time this eliminates thermal bridges at the bottom of the store. In contrast, there is only the disadvantage that the store is more voluminous, but this is not a problem with a store volume of 300 I, since its diameter of 710 mm is still less than the width of conventional doors. The thermal insulation shall be designed so that the store tank achieves at least energy efficiency class "B" according to Regulation (EU) No 812/2013, Annex II /1/. The reason therefore is that since 26.09.2017 the energy efficiency class "C" must at least be reached. However, investigations have shown, that for this store size in combination with a thermal insulation, which achieves the energy efficiency class "B" the into the LCOH_{sol,fin} is approx. 0.7 ct/kWh or 5% lower compared to a store which achieves the energy efficiency class "C".

Description of the standardized hot water store

Taking into account all influencing factors such as fractional energy savings f_{sav} , the volume of the thermal insulation and steel as well as the weld length and the stores offered on the market, a store diameter of 0.55 m was finally defined. Figure 1 shows the standardized solar domestic hot water store including the dimensions. With a storage volume of 300 l and a diameter of 0.55 m, this results in a total store height (without thermal insulation) of 1389 mm, including the dished ends with a height of 124 mm. To achieve the energy efficiency class "B" according to Regulation (EU) No 812/2013, Annex II, an insulation thickness of 80 mm on the top and mantle as well as 70 mm at the bottom is sufficient assuming a thermal conductivity of 0.03 W/(m·K). This results in a total store height of 1539 mm and a maximum store diameter of 710 mm. Since there are also foams with a lower thermal conductivity, the insulation thickness may still be reduced. As already mentioned, foamed-in stores of this size do not necessarily require a special foot construction. If this is omitted, however, a metallic bottom plate must be placed under the thermal insulation where adjustable feet for aligning the store can be mounted.

All connections for charging and discharging the store are in the dimension 1" (external thread). This dimension has prevailed on the market for the most stores with a volume of 300 l. Only the connection for the circulation return is designed in the dimension $\frac{1}{2}$ " (external thread). There is also a connection for the sacrificial anode (internal thread, 5/4") at the top of the store. This position is preferred by almost all manufacturers. In addition, there is a connection with 6/4" (internal thread) at approximately mid-height of the store for mounting an electric heating element, which can be used for alternative charging of the auxiliary part. In the lower area there is a cleaning and inspection flange with a diameter of 120 mm, as recommended according to DIN EN 12897: 2016, Annex C /2/. Although a cleaning flange is only mandatory in very few countries, the practice shows that over time much sludge, particularly from the sacrificial anode, deposited in the store, which should be removable. In addition, the opening during the enameling process is

Standardised solar domestic hot water store

INFO Sheet B<mark>x</mark>

advantageous because the enamel liquid can flow out faster. In addition, this flange can also be used for the installation of an additional electric heating element. The connections for the collector supply and return are positioned at the same height, so that the solar station can be easily mounted on 90° bends on this. This saves installation time and material. In Figure 1, all ports are rotated to the drawing plane. The connections for the collector circuit (respectively the solar station) are rotated by approx. 45° to the other connections so that the pipes of the collector circuit do not collide with the other connections. In addition, threaded sleeves for the additional attachment of the solar station and the expansion vessel are provided on the store.

Figure 1: Standardized solar domestic hot water store

For mounting the temperature sensors on the store, 2 immersion sleeves with a diameter of 12 mm are welded into the storage tank. This is a widespread possibility of mounting, especially for hot water stores using rigid foam, which also determines the height of the sensors and thereby prevents them from being

INFO Sheet Bx

Standardised solar domestic hot water store

installed at the wrong height. A diameter of 12 mm guarantees that all common temperature sensors can be installed. However, these should be equipped with a spring to ensure good thermal contact with the sleeve.

The interior of the store is shown in figure 1 as an example. It is deliberately not standardized to give the manufacturers here the possibility of individualization e. g. to determine the performance of their store by the design of the heat exchanger according to their wishes.

Cost reduction potential

The main cost reduction potential of the standardised solar domestic hot water store is not in the production costs. Here a reduction of approx. 5 to 10 % are estimated, depending on the number of units assuming mass production, caused by standardised sizes and fittings and a higher machine utilization. The main cost benefit will be the saved installation time (estimated to approx. 10 to 15% less compared to non standardised hot water stores) if the Standard will be widely spread on the market and the installers are used to it. In addition, the solar thermal system will operate with higher thermal performance and less maintenance due to less installation errors.

References

/1/ COMMISSION DELEGATED REGULATION (EU) No 812/2013, ANNEX II

/2/ DIN EN 12897:2016 Water supply – Specification for indirectly heated unvented (closed) storage water heaters; Annex C

Acknowledgements

The research project "Cost reduction in solar heat by standardized components and interfaces", acronym "KoST", is funded by the German Federal Ministry for Economic Affairs and Energy by resolution of the German Parliament and managed by Project Management Jülich (PTJ) under grant number 0325860A and financially supported by the participating industries. The author gratefully acknowledges this support and take the responsibility for the contents of this publication.

Anhang U: IEA SHC Task 54 Info sheet Standardised solar combistore

Standardised solar combistore

INFO Sheet B<mark>x</mark>

Description:	Requirements and definition of a standardized combistore for a typical solar combisystem in Germany
Date:	12.08.2019 V2
Authors:	Stephan Bachmann, Stephan Fischer
Download possible at:	http://task54.iea-shc.org/

Introduction

Standardized components and interfaces can lead to significant cost reduction amongst others in production as well as in installation. The German project "KoST" which is carried out in the frame work of IEA SHC Task 54 addresses this subject and aims at a reduction of the solar heat production costs by about 40% to increase the competitiveness of solar thermal energy to other heat generation technologies. This goal is to be achieved primarily through the improvement of the thermal performance, the reduction of the production costs and the standardization of the main components such as collector, store, controller and mounting systems. Therefore a proposal for a standardized combistore was elaborated in agreement with the project partners and on the basis of a detailed market research. The market research contains detailed information on volumes, dimensions, store concept, thermal insulation, hydraulic connections, the mounting of the temperature sensors and the thermal performance for 37 combistores with nominal volumes of 500 I to 2010 I. The data are based on manufacturer information from product catalogs as well as data from stores tested at ITW / TZS.

Requirements preliminary considerations

In agreement with the project partners of the German project "KoST" and on the basis of a detailed market research, the requirements for a standardized combistore have been developed.

- > Cylindrical steel tank with 2 immersed heat exchangers for the solar loop and for hot water preparation
- suitable for passing through standard doors
- volume of 800 liters
- removable thermal insulation, energy efficiency class "B" according to Regulation (EU) No 812/2013, Annex II /1/
- > without equipment for thermal stratification due to additional production costs
- suitable for systems where the auxiliary heater delivers heat always to the store and for systems where the auxiliary heater supports the space heating system directly

The requirements were defined based on the following preliminary considerations. The store is a cylindrical tank made of steel equipped with 2 immersed heat exchangers: One for the solar loop and one for hot water preparation. The main reasons therefore are the additional costs and the omission of the installation compared to systems with external heat exchanger.

SOLAR HEATING & COOLING PROGRAMMI

Standardised solar combistore

INFO Sheet B<mark>x</mark>

One important demand is that the store is suitable for passing through standard doors. This results in a diameter of 0.79 m which is commonly used for combistores, and a height of about 1.9 m, inclusive feet. Both demands result in a store volume of 800 l. Another demand concerns the heat losses of the store: The store should reach the energy efficiency class "B" according to Regulation (EU) No 812/2013, Annex II /1/. The reason therefore is that since 26.09.2017 the energy efficiency class "C" must at least be reached. As insulation material a removable polyester fiber fleece was chosen because it is commonly used, inexpensive, insensitive and easy to lay on the store. A thickness of 15 cm at the top and the mantle and 12 cm at the bottom is sufficient to reach the efficiency class "B". The mantle of the insulation should be divided in two parts which is common for a better handling. The two parts should be closed by a towel rack with hooks which allows an easy and comfortable lock of the mantel insulation. The bottom of the insulation consists of two parts: One cylindrical part which is positioned inside the base ring and a strip which is positioned outside the base ring (see figure 1).

Description of the standardized combistore

The foot construction of the store is made of a ring of steel (base ring), which is very stable, easy to fabricate and inexpensive. For mounting the temperature sensors several small sheets of steel are welded at the store mantle in different heights, where the sensors can be pushed underneath under (see figure 2). The advantage of this solution is, that the positions of the sensors are defined and thereby an installation of the sensor at a wrong height is avoided compared to one mounting sheet which extends from the bottom to the top of the store.

The number and height of the connections are chosen in a way that the store can be used in systems where the auxiliary heater delivers heat always to the store (2 auxiliary volumes for hot water preparation and space heating) and for systems where the auxiliary heater supports the space heating system directly. The connections for direct charging and discharging are in the dimension 1 1/2" (inside thread). Thereby it is possible to connect a heat pump, too. The connections for tap water and for the solar circuit are in the dimension 1" (outside thread). The connections for the collector flow and return and the connections for the space heating flow and return are positioned at the same height, so that the solar station respectively the pump station of the space heating loop can be easily mounted on 90° bends on them. This saves installation time and material. Since the lowest connection for direct charging / discharging is not positioned at the bottom there is a need of a connection for drain (1/2") which doesn't pass the insulation to omit a thermal bridge. On top of the store there is a connection for ventilation (1/2"). In figure 1, all ports are rotated to the drawing plane. The connections so that the pipes of the collector circuit does not collide with the connections above. In addition, threaded sleeves for the additional attachment of the solar station and the pump station for the space heating loop are mounted.

The interior of the store is shown in figure 1 as an example. It is deliberately not standardized in order to give all manufacturers the possibility of unique selling points e. g. to determine the performance of their store by the design of the heat exchangers according to their wishes.

Figure 1: Standardized solar combistore

INFO Sheet Bx

Figure 2: Sheet with screw for clamping the temperature sensor

Cost reduction potential

The main cost reduction potential of the standardised solar combi store is not in the production costs. Here a reduction of approx. 5 to 10 % are estimated, depending on the number of units assuming mass production, caused by standardised sizes and fittings and a higher machine utilization. The main cost benefit will be the saved installation time (estimated to approx. 10 to 15% less compared to non standardised hot water stores) if the Standard will be widely spread on the market and the installers are used to it. In addition, the solar thermal system will operate with higher thermal performance and less maintenance due to less installation errors.

References

/1/ COMMISSION DELEGATED REGULATION (EU) No 812/2013, ANNEX II

Acknowledgements

The research project "Cost reduction in solar heat by standardized components and interfaces", acronym "KoST", is funded by the German Federal Ministry for Economic Affairs and Energy by resolution of the German Parliament and managed by Project Management Jülich (PTJ) under grant number 0325860A and financially supported by the participating industries. The author gratefully acknowledges this support and take the responsibility for the contents of this publication.

4