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ABSTRACT

The storage of surplus heat in the underground and retrieval
when required is a promising method for optimizing the
energy efficiency of new housing estates. A new approach
for the coupled numerical modelling of such problems will
be presented. Here, the energy simulation software
TRNSYS is directly coupled with the finite element
subsurface flow and transport simulation software
FEFLOW. This way it is possible to simulate the energy
transfer between solar panels, building instalations and
thermal storage in the subsurface in an efficient and
accurate manner. At the presented pilot installation the heat
is transferred to the ground by using large arrays of
borehole heat exchangers. For the simulation the borehole
heat exchanger systems are modeled by a set of one
dimensional representations, either using afinite-element or
an analytical approach. This way the calculation time is
significantly reduced compared to fully discretized
calculations while still achieving precise results.

1. INTRODUCTION

Shallow geothermics has an increasing importance
worldwide. Expertise on environmental matters requires
estimating the potential impact of Borehole Heat Exchanger
(BHE) systems on the subsurface temperature. Various
techniques are avalable to analyze the flow and heat
transport processes for BHE and the surrounding soil
layers. Currently, two major approaches are preferred. First,
BHE is modelled in a fully discretized manner via
numerical schemes in three dimensions. However, due to
the extreme disproportional geometries and high parametric
contrasts typica for BHE the computation becomes a
difficult and expensive numerical task. Second, analytica
or semi-analytical techniques have shown attractive in
engineering practice. However, their results are restricted
due to inherent simplified assumptions (e.g., averaged
guantities, neglecting groundwater interaction, linearization
of underlying physics). As a result, more efficient and
powerful methods are required providing the full coupling
between BHE and the subsurface without the need to
resolve BHE in geometric detail. This becomes especialy
important in the case of large BHE arrays.

BHE systems can be constructed in different ways. The
most common in practice are single U-shape pipe
(consisting of an inlet pipe, an outlet pipe and grout),
double U-shape pipe (consisting of two inlet pipes, two
outlet pipes and grout) and coaxial pipe (consisting of an
inlet pipe included with an outlet pipe and grout)
installations. Such heat exchangers form a vertical borehole
system, where a refrigerant circulates in closed pipes
exchanging heat with the surrounding aquifer driven alone
by thermal conductivity (closed loop system). However, the

extreme slenderness, typicaly involved in those boreholes,
requires an advanced numerical strategy, where the BHE
systems are modelled by 1D finite-element representations.
We mainly follow the ideas proposed by Al-Khoury et a.
(2005) and Al-Khoury and Bonnier (2006), who firstly used
1D single and double U-pipe elements in the context of
geothermal heating systems. Al-Khoury et a.’s numerical
strategy is further modified and adapted to FEFLOW
(Diersch and Kolditz, 2002, Zheng, 2007) with respect to
the following:

e Integrating the 1D BHE pipe €eements into
FEFLOW'’s finite-element matrix system similar to
fracture elements.

e Generaization of the formulations for single and
double U-shape as well as coaxial pipe configurations.

e Direct and non-sequential (essentially non-iterative)
coupling of the 1D pipe elements to the porous
medium discretization.

e Extending FEFLOW’s boundary conditions for BHE
pipes similar to multi-well borehole conditions.

2.BOREHOLE HEAT EXCHANGER

The following numerical procedures are given for the
double U-shape pipe (2U) exchanger, but can be easily
trandated to other BHE types. The 2U is a cylindrical
borehole consisting of two inner pipes forming a U-shape
and filled with a grout material as shown in Figure 2.

There are eight components of a 2U exchanger:
e two pipes-in (denoted asil and i2)
e two pipes-out (denoted as 0l and 02)

e grout material which is subdivided into 4 zones
(denoted as g1, g2, g3, g4)

The four pipe components i1, i2, 01, and 02 transfer heat
across their cross-sectional areas and exchange fluxes
across their surface areas. The radial heat transfer from the
pipesis directed to the grout zones g; (i=1,...,4). The grout
zones g; exchange heat directly to the surrounding soil (the
porous matrix with the filled fluid in the void space)
denoted as s and to other contacted grout zones, too. The
heat coupling only occurs via the grout zones, which work
as intermediate media that transfer heat from one pipe to
another and vice versa. Only the grout zones exchange heat
with the surrounding soil s. The 2U system involves several
material and geometrical parameters, which are either given
by the manufacturer of the heating systems or determined
experimentally. These relations are used to express the
overall thermal resistance between the 2U borehole and the
soil. The usua practice is to lump the effects of the 2U
components into effective heat transfer coefficients
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representing the reciproca of the sum of the therma
resistances between the different components. The inner
pipe-grout heat flux resistance relationships are shown in
Figure 2. Their analytical descriptions will be given below.

2.1 Formulation of the Soil Equations
2.1.1 Basic Equations
The conservation equation of fluid massis given by

oh
—+V.q= EOB
S p +V-0=Q+Q @

where § is specific storage coefficient (m™), h is hydraulic
head (m), t is time (s), Q is flow supply (s%). The flux q
(ms?) in the porous medium is expressed by the Darcy law
as

q=-K(Vh+y) )

K (m s*Y) represents the hydraulic conductivity tensor given
by
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where k is permesbility tensor (m?), p' is fluid density

(kg m®) and g is the gravity vector (m s?). The temperature
dependence of the dynamic viscosity 4/ (kg m* s%) can also
be taken into account. Superscript f stands for fluid. yisthe
buoyancy term calcul ated as
f f
PPl =9
P g
pf :pof[l_ﬁ(Ts_TsO)] (4)
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where 3 is the thermal expansion coefficient (°C™) and T is
temperature (°C). Subscript s stands for soil and 0 for a
reference value.

The extended Oberbeck-Boussinesg approximation is
calculated as

aT.
Qeos = ﬂ[q VT + 575)

a ®)
where € is porosity (-).

The conservation equation of therma energy in the soil s
can be expressed as

3(pg: L 49 ((p0)' T,)-V-(A-VT,) = H, ©

with the tensor of thermal hydrodynamic dispersion

a®q

A=2 +(pc)f aTHqHI +(aL _aT) H H
f )
Here oi and o4 (M) are longitudinal and transverse thermo-
dispersivity, respectively, | is unit vector (-), c is specific
heat capacity (Jkg'K™), A is therma conductivity
WK?*mY and H (Wm?) is therma sink/source term.
Superscript b denotes bulk values. Thermal boundary
conditions of Dirichlet-, Neumann- and Cauchy-type can be
applied asusual.

Figure 1: Schematization of a 2U-type BHE (from Al-
Khoury and Bonnier, 2006)

Figure 2: Inner pipegrout heat flux resistance
relationships of a 2U borehole

2.22.2 Pipe equations
2.2.1 Basic equations

The BHE represents a closed pipe system, where a
refrigerant fluid is circulating with a given velocity u. The
heat transport equations of a 2U configuration can be
written for the inflow pipeilasfollows

%(Prcr-ril)"'v'(prcru-ril)_v'(Ar 'VTil): Hil in Qu (8)

with Qur, =P s (Tgl - T.l) on T

and similarly for i2, ol and 02. The grout equation for g1
reads
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Similarly for g2, g3 and g4, where
A= +p'c'aLHuH)l (10)

For single U-shape pipe and coaxia pipe exchangers only
four respectively three borehole components exist
consisting of one pipe-in, one pipe-out and two respectively
one grout zone(s). In these cases the eguations for the
second in-/outflow are irrelevant and the transfer
coefficients for the second pipe vanish.

2.2.2 Heat transfer coefficients

Thermal resistances are determined from the physical,
material and geometric engineering parameters of the
different BHE configurations as shown in Fig. 2 for the 2U
exchanger. As indicated there the interaction between the




different components of the pipe exists between the pipe-in
and grout zones, the pipe-out and grout zones as well as the
pipe-in and pipe-out. The following thermal resistances can
be derived.

The thermal resistance between the pipes and grout zonesis
caused by the advection of the pipe flow and thermal
conductivity of the pipe wall material specified separately
for pipe-in and pipe-out

Rig=Ra, +R,. +R . (k=i1ni2) (11)

And similarily for Ry

Thermal resistance due to the advective flow of refrigerant
in the pipes
1

= k=i1,0Li2,02 (12)
Nu A 7 k=it.otizez)

R,
In (12) the Nusselt numbers, Nuy, differ between laminar
and turbulent flow (DI, 2006), viz.,

for laminar flow if Re, <2300
Nu, =4.364
for turbulent flow if Re, >10°

i\%
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Nu, = (1- 7, )4.364+
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in which Pr represents the Prandtl number and Rey are the
Reynolds number defined as

HC Rek: ‘Lr'l‘dkr
u/p

(k=i1,0L,i2,02) (14

Where ¢ are the diameters of the pipes
di =2r (k=iL0Li2,02)- Furthermore, L corresponds to the
length of the pipe and

& =(18log,, Re,~1.5) (15)
Re,— 2300
=—¢—— (0<y.<1
Y 10° — 2300 ( Yk )
Itis
Q’i for parallel discharge (16)
lu,|= 2(x,f (k=iLoLi2,02)

- for serial discharge
(5

Thermal resistances due to the pipes wall material and grout
transition

n6R) G Cionize) o

ot = 2nip

Where » corresponds to the thermal conductivities of the
pipe wall material.
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R, =XR, (18)
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Where D denotes the borehole diameter, , 1 o isthe
do - szk
k

averaged outer diameter of the pipes
d? =2r° (k=i1,0Li2,02) ad s=wy2 corresponds to the
diagonal distance of the pipes (see Fig. 2)

Thermal resistance due to inter-grout exchange:

_2R(Ru-2R) o 2R (R,-2R) (21

Font = 2R, ~R,, + 2R, ™ 2R, -R,,+2xR,
with
arcosh[s2 —Zdj J arcosh[ 2 - d; J
Rus = 27A° iR = 2778 ) @)
Thermal resistance due to the grout material is:
R, =(1-X)R, (23)

The heat transfer coefficients specified for the 2U
configuration are related to thermal resistance relationships.
Due to the analogy of Fourier's law for heat flow and
Ohm'’slaw for electric current flow simple formulations can
be derived to lump the effects of the BHE constituents into
an effective coefficient representing the reciproca of the
sum of the therma resistances acting on their specific
exchange surfaces S between the different components.

o = 11 P 1 1,
fig T 5 o ' fog — o !
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2.3 Analytical BHE Solution

231 Loca Steady-State Condition with  Given
Temperature at Borehole Wall

The present anaytical solution is only vaid for local
steady-state heat transport and a given temperature Ts at
borehole wall. It was first derived by Eskilson and Claesson
(1988) for heat transfer between two pipes and the borehole
wall. We extend the analytical method to coaxia pipe with
annular (CXA) and centred (CXC) inlet, 1U and 2U
configurations of BHE. The loca steady-state heat balance
equations for fluid in pipe-in and pipe-out reads
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—/A\iprCrU(VZTil) T Ts+T|1 Tol 2
R R (25)
Apreu(y T, = e Ty T
R RS

which have to be solved for the pipe(s)-in temperature
Ti1(2) and pipe(s)-out temperature T,;(2). The vertical heat
conductivity in the pipes is neglected. It is further assumed
that the inner cross-sectional area of pipe-in and pipe-out is
equa A'=A' = A, . Theloca steady-state condition limits
the application of (20) to atime scale larger than

t>t5‘e“"y—5D2 gp fe' +(1-¢g)p°c (26)
mit g A+ (1-e) A

The time for the refrigerant to circulate through the
boreholeis 2A [/Qr . Accordingly, equations (20) can only

describe transient input variations of inlet temperature and
pumping rate on atime scale larger than

2L (27)

T

t>tie y NS

The specific therma flux ¢(z,t) exchanging heat of the
borehole with the adjacent soil s is given from (20)
according to

T, _Til T _Tol (28)

2.3.2 Eskilson and Claesson’s Analytical BHE Solution

The coupled equations (76) can be solved by using Laplace
transforms (Eskilson and Claesson, 1988). It yields

T,@) =Ty O DT, )+ T.] f.(z- )i
0 (29)

(0<z<T)

T, (@) =ToO 2+ T, () +T.[ f(z-£He

0
The functionsfy, f,, ..., f5 are given by the expressions

f,(2)=€”[cosh(yz) - ssinh(3z)]

fz(z):e/”ﬁ—;sinh(;z) (30)
L=
1()=e| o) 95,4 22 Jaon)|
)| oo, + L i)
where
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-1 _bB-B (1)
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V= \/(ﬂl IBZ) +ﬂ12(ﬁ1 ﬁz)
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The following boundary conditions are applied

T.00=T (32)
Til(E)=Tol<E>

where T; represents the inlet temperature. Using (32) in (30)
and (31) the outlet temperature T, is given as

T,=T,(0) (33)

2.3.3 Solution for a2U Configuration

It is assumed that the pipes are arranged symmetrically
within the borehole. Accordingly, thereis

R =R’ (34)
S0 that

a 1
ﬁz _ﬁl - RiAAi,OrCrU

_ 1
b= TR gou (35)
B=0

V=4 .Blz + Zﬁuﬁl
5=2(Bo+ 1)
Y

Hence, (30) smplifies

fz(z)=ﬂ7smh( ) (36)
f:(2)=f,(2)
f,(z)= B, cosh(jz)— (6[;’ +'62'612]smh(72)

(2= 5, cosh(az){ﬁﬁz +/’1—fﬂ]snh(az)

In using (32) the equations (29) can be equalized at z=L
and solved for the outlet temperature T, viz.,

I 3(2)_ 2 Z)+

T, 37)
@1, z)i[fl(Z &)+ fo(z-4)hg

f,(2)+ f,(2) T 28
Ot E- Gy o)
appliedtoz=L

With known inlet temperature T; from the boundary
condition (32) and outlet temperature T, from (37) the
temperature distributions T;; and T; as a function of z are
obtained after evaluating the integralsin (29). It yields

T.(2)=T f.(2)+ T, f,(2)+
TS[;}K5+%](1— cosh(;z)+sinh(;z))} (39)
Ta(2)=-T f,(2)+ T, f5(2)+
TS[;{(5+%j(l—cosh(;zﬂsinh(;z))}

The temperature distribution for the grout zones Ty (2) and
Tg2(2) can be derived for the 2U configuration as
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Thethermal resistances R* and RS aregiven by
R2|U+ 2U
R =— ZRQ (41)
RZU
rp- ) fgj) (v-3]
for 2U pipes.

2.4 Implementation

The finite element discretization yields a matrix system,
which can be written in compact form as

i e

RPS As Ts Bs (42)
where subscripts pipe and s denote entities for the inner
pipe problem and the outer soil problem, respectively, while
subscript ps identifies pipe-soil transfer entities. To solve
the matrix system (42) a static condensation strategy
(Zienkiewicz and Taylor, 2000) is applied. In doing this, a
reduced equation system results

(A, -AL)T, = B,-B,
APS = RT (A pzllpe Rps)
B ps = RT (A p|1pe R pipe ( 43)

for solving only the soil temperature Ts. Using Eq. (42) a
direct and non-sequentia solution of the complete
temperature field for the soil and the pipeis possible.

2.5 Implementation Analytical BHE Solution
For the soil temperatures T =T, (tn+1) the spatio-temporal
finite element discretization is taken in the following form:

(A A+ Rae)ATF™ = B + Bre (177} (44)
where with (28) a BHE-related diagonal resistance matrix

1 1 45
e[ *

and a source/sink term on the RHS

Beue (Tsn +1) = I ( Téjl + Téfl Jdﬂ (46)

z

appear. The temperature distributions for pipe(s)-in 17+
and pipe(s)-out Tt represent complex analytical
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expressions as given in the previous text (see equation 38).
Since they are again dependent on the soil temperature

Tn+1 T n+1<-|-sn+l) (47)
Tn+1 Tn+1( n+1)

the matrix system (44) is solved via an iterative procedure
according to

starting solutiont =0

([A s *] + R BHE ) ) {TS }(n+l {B }n+1 { BHE ( ! )}
iteration ©+1 (48)
(A1 Roue)- T = (B + B (1))

The iterations with the current time level (n +1) are stopped
if

-I-(n+1),(r+1) _-I-(n+1),r

S S

<0 (49)
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2.6 Model Validation

2.6.1 Analytical Solution of Heat Transport in a Single Pipe
with Sail Interaction

Exact solutions for heat flow in BHE configurations
imbedded in a 3D layered soil system do not exist.
However, there are analytical solutions suited for the partia
problem of the 1D heat transport in a single pipe with a
lateral heat exchange to the surrounding grout or soil. It can
be used to compare the numerical results for a BHE
solution at a starting period when the heat flow developsin
the 1D pipe-in of aheat exchanger interacting with soil. It is
assumed that the heat transfers to the grout and to the sail
are equal. In such a case the governing heat transport
equation reads

LY a—T—D§+¢(T—TS)=O
ot 0z 0z (50)

where T (=T;q) is the fluid temperature in the pipe-in, u is
the refrigerant fluid velocity, D is the thermal diffusivity, ¢
is a specific heat transfer coefficient, Ts is the surrounding
soil temperature taken as a reference temperature and z is
the vertical coordinate. Thermo-dispersivity, refrigerant
fluid velocity and specific heat transfer coefficient are
related to the parameters used in the numerical modelling as
follows:

Al . 27,00,
D= T r All ( 1)2’ = "
plc A Ap'c (51)

Choosing the following initiad and boundary conditions
according to

_;BT(

T(z0)=T,T(O,t)=T, > o0,t)=0

(52)

the analytical solution (van Genuchten et al., 1982) for Eq.
50 isgiven by

exp[(u_v)z}erfc( z—vt}r
T(z,t)=T T 2D 2/Dt (53)

7 e U 2

v=u 1+ﬂ;
u
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The numerical model is shown in Figure 3 forming a 3D
box with a horizontal extent of 20 m x 20 m and a depth of
1 m. In the central position a single BHE is located, where
the heat transfer coefficients of pipe-in to grout and grout to
soil are identical @4 = g, While the heat transfer of the
pipe-out is set to zero ®yq=0 to eliminate thermal
interaction of the pipe-out to the grout heated by pipe-in.

Figure 3: Single BHE in a 3D mesh (exaggerated cut
view)

Figure 4: Computed temper ature profilesin comparison
to the analytical solution (with 100 and 200
layers, respectively) for the single pipe-soil
interaction at t = 0.02 d

The computed temperature BHE profiles in comparison to
the analytical solution at t = 0.02 days are shown in Figure
4, revealing a good agreement. As seen in Figure 4 at early
times when the heat flow through the pipe is significantly
influenced by advection a sufficient vertica spatid
discretization is needed to obtain accurate solutions
(compare the 100 vs. the 200 layer solution). At later times,
however when the heat front in the pipe disappears and the
process is dominated by heat transfer this effect declines.

2.6.2 BHE Solution Versus Fully Discretized 3D Model
(FD3DM) Solution Applied to a Double U-Shape Pipe
System

Comparisons between the proposed BHE solution and a
fully discretized 3D model solution (FD3DM) are
performed for heating operation of a 2U configuration
located in central position of an agquifer domain measuring
20 m x 20 min horizonta directions and 55 min depth. The
meshes used for both solutions are shown in Figure 5

revealing a much more refined tessellation for FD3DM to
discretize appropriately the interior geometric structure of
the 2U exchanger. In both meshes, however, the vertical
discretization is the same by using 55 layers. For the 2U
exchanger problem the used parameters are summarized in
Table 1. In FD3DM 1D discrete feature (fracture) elements
have been used to model the internal pipes. It was necessary
to assign the inner pipe surplus to a high thermal
conductivity of solid with anisotropy. For the surplus we
took a value of A°=10°Im™s? with an anisotropy factor

of ii/lix,yﬁo'

Table 1: Parameters of the 2U Exchanger Problem

Parameter Symbol  [Value Unit

Depth of borehole L 55 M
Borehole diameter D 12 cm

Outer diameters of pipes-in |di° 32 cm

Outer diameters of pipes-  |do® 32 cm

out

Pipes-in wall thicknesses  |biy,biz 2.9 mm
Pipes-out wall thicknesses |bg,bee 2.9 mm

Pipe distance w 4.2 cm
Volumetric heat capacity of [p°c® 2.157410° [Im3K?
pipewalls

Thermal conductivitiesof |A°A°, [0.38 wmtk?
pipewalls Aot® Aod®

Total flow discharge of (0} 38.284 m3d-1
refrigerant

Total heat input rate [0} 6.3242109- [Jd-1
Reference temperature T, R 10 °C

Inlet temperature Ti 50 °C
Volumetric heat capacity of [rcr 4.12984-10° |IJm-3K-1
refrigerant

Thermal conductivity of  |r 0.65 ImisK?
refrigerant

Volumetric heat capacity of [p%? 2.19-10°% JIm3K?
grout

Thermal conductivity of |29 23 Im?sTK?
grout

Porosity of soil €

Volumetric heat capacity of |p'c 4.2-10° JIm3K?
groundwater

Volumetric heat capacity of [p°c® 240510  [Im3K?
soil

Thermal conductivity of |2 0.65 JIm?sK?
groundwater

Thermal conductivity of  [a® 2.46 ImisK?
soil

Longitudinal thermo- oL 0.5 m
dispersivity of aquifer

Transverse thermo- or 0.05 m
dispersivity of aquifer

Initial temperature Ts(0) 10 °C
Computed heat transfer coefficients:

pipe-in to grout Dfig 91.624 Im3sK?
pipe-out to grout Drog 91.624 ImZsK?
grout to grout 1 Dy 802.43 Jm3stK
grout to grout 2 Dy 31.702 JmasK
grout to soil Dys 181.02 Im?s’K?
Computed thermal resistances:

pipe-in to grout Riig 0.1326 msK J*
pipe-out to grout Riog 0.1326 msK J*
grout to grout 1 Rgot 0.02077 msK J*
grout to grout 2 Rgg2 0.26287 msK J*
grout to soil Ros 0.05861 msKJ*"

A comparison of the BHE solutions to a fully discretized
3D model (FD3DM) is shown in Figure 6 for the short-term
outlet temperature history, in Figure 7 for the long-time
outlet temperature history and in Figure 8 for the vertical
temperature profile after 12 hours. As reveded the
agreement between the different solutionsis quite good. For




long-term predictions the analytica BHE simulation has
proved to be reasonably accurate and fast, while the
numerical BHE computations became superior to the
analytical BHE solution at short-term predictions and in
good agreement with the FD3DM results from beginning.

For the FD3DM a forward Adams-Bashforth/backward
trapezoid time integration scheme with a RMS error
tolerance of 107 has been used. It took 276 time steps for
the simulation period of 365 days. For the BHE solutions
aways a forward Euler/backward Euler time marching
predictor-corrector scheme with a RMS error tolerance of
10~ was preferred due to better robustness for this class of
problems.
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The analytical BHE required only 227 time steps. In
contrast, the numerical BHE computations failed for the
long-term run because the adaptive time step control could
not increase the time steps anymore and a very large
number of time steps would follow. Obvioudly, this is
caused by random effects triggered from the stiff matrix
system by poor numerical precision of the only 8 byte
floating point mantissa.

The good agreement of the BHE solutions with the FD3DM
results demonstrates the accuracy and practical applicability
of the new BHE modeling strategy. Its numerical efficiency
and capability will be more apparent for arrays of BHE.

Figure5: Finite-element meshesfor (a) BHE consisting of 130.185 pentahedral elements and (b) FD3DM consisting of
1.204.665 pentahedral elements. Both meshes are vertically discretized by 55 layers
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——— BHE numerical
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Figure 6: Short-term outlet temper atur e history of the BHE solution in comparison to the fully discretized 3D model
(FD3DM) solution measured at the pipes outlet
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Figure 7: Long-term outlet temperature history of the

BHE solution in comparison to the fully

discretized 3D model (FD3DM) solution

measur ed at the pipe's outlet

Figure 8: Analytical BHE solution of temperature
profile at t = 12 hoursin comparison to the fully
discretized 3D model (FD3DM)

3. COUPLING OF FEFLOW WITH THE ENERGY
SIMULATION CODE TRNSYS

Borehole thermal energy stores (BTES) consist of a large
number of borehole heat exchangers typically installed with
spacing in the range of two to five meters as the thermal
interaction of the individual borehole heat exchangers is
essential for an efficient storage process. BTES can be a
reasonable technica and economica alternative -
depending on the local geological and hydrogeological
situation — to other techniques of heat storage for the use in
solar assisted district heating systems with seasona heat
storage. BTES are very sensitive to groundwater flow. Both
for permit procedures required by the authorities and for
plant-engineering issues, a simulation tool is needed which
is capable of predicting the three-dimensional temperature
profile in the underground and the thermal efficiency of the
store. Together with the new BHE option of FEFLOW the
simulation of such installationsis afeasible task.

In addition it is possible using a newly developed IFM
module (ifm_trnsys) to couple the FEFLOW simulation
with the energy simulation software TRNSY S (e.g. Bradley
and Kummert, 2005). This way it is possible to model the
complete energy transfer cycle for instance between an
array of solar panels, the connected buildings and the
subsurface heat storage system together with the thermal

interaction with the surrounding rocks. Ifm_trnsys uses
FEFLOW's programmable interface APl. The program
allows an arbitrary number of BHE's which can be
connected using arbitrary complex circuits. An example of
the user interface is shown in Figure 9.

Figure 9: The user interface of the ifm_trnsys code for
connecting the BHE array

A typical result of such computations is shown in Figure
10. However, the main model will be computed in the
future.

CONCLUSIONS

A new finite-element analysis together with an analytic
algorithm for the efficient computation of BHE systems has
been implemented in FEFLOW by using a non-sequential
solution strategy. First verification and benchmark
calculations have shown good accuracy. Further tests with
real data and field applications are currently in progress
(e.g. Bauer et a., 2009). Furthermore, a direct coupling
with the TRNSY'S (Bradley and Kummert, 2005) code for
energy simulation of buildings will be released shortly.

Figure 10: Temperaturedistribution around an array of
80 BHE computed with FEFLOW coupled with
TRNSYS
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