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ABSTRACT 

The storage of surplus heat in the underground and retrieval 
when required is a promising method for optimizing the 
energy efficiency of new housing estates. A new approach 
for the coupled numerical modelling of such problems will 
be presented. Here, the energy simulation software 
TRNSYS is directly coupled with the finite element 
subsurface flow and transport simulation software 
FEFLOW. This way it is possible to simulate the energy 
transfer between solar panels, building installations and 
thermal storage in the subsurface in an efficient and 
accurate manner. At the presented pilot installation the heat 
is transferred to the ground by using large arrays of 
borehole heat exchangers. For the simulation the borehole 
heat exchanger systems are modeled by a set of one-
dimensional representations, either using a finite-element or 
an analytical approach. This way the calculation time is 
significantly reduced compared to fully discretized 
calculations while still achieving precise results. 

1. INTRODUCTION 

Shallow geothermics has an increasing importance 
worldwide. Expertise on environmental matters requires 
estimating the potential impact of Borehole Heat Exchanger 
(BHE) systems on the subsurface temperature. Various 
techniques are available to analyze the flow and heat 
transport processes for BHE and the surrounding soil 
layers. Currently, two major approaches are preferred. First, 
BHE is modelled in a fully discretized manner via 
numerical schemes in three dimensions. However, due to 
the extreme disproportional geometries and high parametric 
contrasts typical for BHE the computation becomes a 
difficult and expensive numerical task. Second, analytical 
or semi-analytical techniques have shown attractive in 
engineering practice. However, their results are restricted 
due to inherent simplified assumptions (e.g., averaged 
quantities, neglecting groundwater interaction, linearization 
of underlying physics). As a result, more efficient and 
powerful methods are required providing the full coupling 
between BHE and the subsurface without the need to 
resolve BHE in geometric detail. This becomes especially 
important in the case of large BHE arrays. 

BHE systems can be constructed in different ways. The 
most common in practice are single U-shape pipe 
(consisting of an inlet pipe, an outlet pipe and grout), 
double U-shape pipe (consisting of two inlet pipes, two 
outlet pipes and grout) and coaxial pipe (consisting of an 
inlet pipe included with an outlet pipe and grout) 
installations. Such heat exchangers form a vertical borehole 
system, where a refrigerant circulates in closed pipes 
exchanging heat with the surrounding aquifer driven alone 
by thermal conductivity (closed loop system). However, the 

extreme slenderness, typically involved in those boreholes, 
requires an advanced numerical strategy, where the BHE 
systems are modelled by 1D finite-element representations. 
We mainly follow the ideas proposed by Al-Khoury et al. 
(2005) and Al-Khoury and Bonnier (2006), who firstly used 
1D single and double U-pipe elements in the context of 
geothermal heating systems. Al-Khoury et al.’s numerical 
strategy is further modified and adapted to FEFLOW 
(Diersch and Kolditz, 2002, Zheng, 2007) with respect to 
the following: 

• Integrating the 1D BHE pipe elements into 
FEFLOW’s finite-element matrix system similar to 
fracture elements. 

• Generalization of the formulations for single and 
double U-shape as well as coaxial pipe configurations. 

• Direct and non-sequential (essentially non-iterative) 
coupling of the 1D pipe elements to the porous 
medium discretization. 

• Extending FEFLOW’s boundary conditions for BHE 
pipes similar to multi-well borehole conditions. 

2. BOREHOLE HEAT EXCHANGER 

The following numerical procedures are given for the 
double U-shape pipe (2U) exchanger, but can be easily 
translated to other BHE types. The 2U is a cylindrical 
borehole consisting of two inner pipes forming a U-shape 
and filled with a grout material as shown in Figure 2. 

There are eight components of a 2U exchanger: 

• two pipes-in (denoted as i1 and i2) 

• two pipes-out (denoted as o1 and o2) 

• grout material which is subdivided into 4 zones 
(denoted as g1, g2, g3, g4) 

The four pipe components i1, i2, o1, and o2 transfer heat 
across their cross-sectional areas and exchange fluxes 
across their surface areas. The radial heat transfer from the 
pipes is directed to the grout zones gi (i=1,…,4). The grout 
zones gi exchange heat directly to the surrounding soil (the 
porous matrix with the filled fluid in the void space) 
denoted as s and to other contacted grout zones, too. The 
heat coupling only occurs via the grout zones, which work 
as intermediate media that transfer heat from one pipe to 
another and vice versa. Only the grout zones exchange heat 
with the surrounding soil s. The 2U system involves several 
material and geometrical parameters, which are either given 
by the manufacturer of the heating systems or determined 
experimentally. These relations are used to express the 
overall thermal resistance between the 2U borehole and the 
soil. The usual practice is to lump the effects of the 2U 
components into effective heat transfer coefficients 
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representing the reciprocal of the sum of the thermal 
resistances between the different components. The inner 
pipe-grout heat flux resistance relationships are shown in 
Figure 2. Their analytical descriptions will be given below. 

2.1 Formulation of the Soil Equations 

2.1.1 Basic Equations 

The conservation equation of fluid mass is given by 
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where S0 is specific storage coefficient (m-1), h is hydraulic 
head (m), t is time (s), Q is flow supply (s-1). The flux q 
(m s-1) in the porous medium is expressed by the Darcy law 
as 
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K (m s-1) represents the hydraulic conductivity tensor given 
by 
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where k is permeability tensor (m2), ρf is fluid density 
(kg m-3) and g is the gravity vector (m s-2). The temperature 
dependence of the dynamic viscosity µf (kg m-1 s-1) can also 
be taken into account. Superscript f stands for fluid. ψ is the 
buoyancy term calculated as 
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where β is the thermal expansion coefficient (°C-1) and T is 
temperature (°C). Subscript s stands for soil and 0 for a 
reference value. 

The extended Oberbeck-Boussinesq approximation is 
calculated as 
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where ε is porosity (-). 

The conservation equation of thermal energy in the soil s 
can be expressed as 
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with the tensor of thermal hydrodynamic dispersion 
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Here αL and αT (m) are longitudinal and transverse thermo-
dispersivity, respectively, I is unit vector (-), c is specific 
heat capacity (J kg-1 K-1), λ is thermal conductivity  
(W K-1 m-1) and H (W m-3) is thermal sink/source term. 
Superscript b denotes bulk values. Thermal boundary 
conditions of Dirichlet-, Neumann- and Cauchy-type can be 
applied as usual. 

 

Figure 1: Schematization of a 2U-type BHE (from Al-
Khoury and Bonnier, 2006) 

 

Figure 2: Inner pipe-grout heat flux resistance 
relationships of a 2U borehole 

2.22.2 Pipe equations 

2.2.1 Basic equations 

The BHE represents a closed pipe system, where a 
refrigerant fluid is circulating with a given velocity u. The 
heat transport equations of a 2U configuration can be 
written for the inflow pipe i1as follows 
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and similarly for i2, o1 and o2. The grout equation for g1 
reads 
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Similarly for g2, g3 and g4, where 

( )IuΛ L
rrrr c αρλ +=  (10) 

For single U-shape pipe and coaxial pipe exchangers only 
four respectively three borehole components exist 
consisting of one pipe-in, one pipe-out and two respectively 
one grout zone(s). In these cases the equations for the 
second in-/outflow are irrelevant and the transfer 
coefficients for the second pipe vanish. 

2.2.2 Heat transfer coefficients 

Thermal resistances are determined from the physical, 
material and geometric engineering parameters of the 
different BHE configurations as shown in Fig. 2 for the 2U 
exchanger. As indicated there the interaction between the 
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different components of the pipe exists between the pipe-in 
and grout zones, the pipe-out and grout zones as well as the 
pipe-in and pipe-out. The following thermal resistances can 
be derived. 

The thermal resistance between the pipes and grout zones is 
caused by the advection of the pipe flow and thermal 
conductivity of the pipe wall material specified separately 
for pipe-in and pipe-out 
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In (12) the Nusselt numbers, Nuk, differ between laminar 
and turbulent flow (VDI, 2006), viz., 
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in which Pr represents the Prandtl number and Rek are the 
Reynolds number defined as 
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Where i
kd  are the diameters of the pipes 
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Thermal resistances due to the pipes wall material and grout 
transition 
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Where p
kλ  corresponds to the thermal conductivities of the 

pipe wall material. 
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Where D denotes the borehole diameter, ∑=
k

o
ko dd

4

1  is the 

averaged outer diameter of the pipes 
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Thermal resistance due to the grout material is: 
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The heat transfer coefficients specified for the 2U 
configuration are related to thermal resistance relationships. 
Due to the analogy of Fourier’s law for heat flow and 
Ohm’s law for electric current flow simple formulations can 
be derived to lump the effects of the BHE constituents into 
an effective coefficient representing the reciprocal of the 
sum of the thermal resistances acting on their specific 
exchange surfaces S between the different components. 

gsgs
gs

ggg
gg

ggg
gg

ofog
fog

ifig
fig

SR

SRSR

SRSR

11

;
11

;
11

;
11

;
11

22
2

11
1

=Φ

=Φ=Φ

=Φ=Φ
 (24) 

2.3 Analytical BHE Solution 

2.3.1 Local Steady-State Condition with Given 
Temperature at Borehole Wall  

The present analytical solution is only valid for local 
steady-state heat transport and a given temperature Ts at 
borehole wall. It was first derived by Eskilson and Claesson 
(1988) for heat transfer between two pipes and the borehole 
wall. We extend the analytical method to coaxial pipe with 
annular (CXA) and centred (CXC) inlet, 1U and 2U 
configurations of BHE. The local steady-state heat balance 
equations for fluid in pipe-in and pipe-out reads 
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which have to be solved for the pipe(s)-in temperature 
Ti1(z) and pipe(s)-out temperature To1(z). The vertical heat 
conductivity in the pipes is neglected. It is further assumed 
that the inner cross-sectional area of pipe-in and pipe-out is 
equal Ai = Ai

i = Ao
i . The local steady-state condition limits 

the application of (20) to a time scale larger than 
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The time for the refrigerant to circulate through the 
borehole is 

r
i QLA2 . Accordingly, equations (20) can only 

describe transient input variations of inlet temperature and 
pumping rate on a time scale larger than  
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The specific thermal flux ϕ(z,t) exchanging heat of the 
borehole with the adjacent soil s is given from (20) 
according to  
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2.3.2 Eskilson and Claesson’s Analytical BHE Solution  

The coupled equations (76) can be solved by using Laplace 
transforms (Eskilson and Claesson, 1988). It yields  
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The functions f1, f2, …, f5 are given by the expressions  
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The following boundary conditions are applied  
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where Ti represents the inlet temperature. Using (32) in (30) 
and (31) the outlet temperature To is given as  
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2.3.3 Solution for a 2U Configuration 

It is assumed that the pipes are arranged symmetrically 
within the borehole. Accordingly, there is  
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so that  
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Hence, (30) simplifies  
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In using (32) the equations (29) can be equalized at Lz =  
and solved for the outlet temperature To, viz., 
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With known inlet temperature Ti from the boundary 
condition (32) and outlet temperature To from (37) the 
temperature distributions Ti1 and To1 as a function of z are 
obtained after evaluating the integrals in (29). It yields  
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The temperature distribution for the grout zones Tg1(z) and 
Tg2(z) can be derived for the 2U configuration as 
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The thermal resistances ∆
1R  and ∆

12R  are given by 
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for 2U pipes. 

2.4 Implementation 

The finite element discretization yields a matrix system, 
which can be written in compact form as 
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where subscripts pipe and s denote entities for the inner 
pipe problem and the outer soil problem, respectively, while 
subscript ps identifies pipe-soil transfer entities. To solve 
the matrix system (42) a static condensation strategy 
(Zienkiewicz and Taylor, 2000) is applied. In doing this, a 
reduced equation system results 
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−

pipepipe
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BBTAA

1

1

 (43) 

for solving only the soil temperature Ts. Using Eq. (42) a 
direct and non-sequential solution of the complete 
temperature field for the soil and the pipe is possible. 

2.5 Implementation Analytical BHE Solution  

For the soil temperatures ( )11 ++ = n
s

n
s tTT  the spatio-temporal 

finite element discretization is taken in the following form:  

[ ] [ ]( ) { } { } ( ){ }111* +++ +=⋅+ n
sBHE

n
s

n
sBHEs TBBTRA  (44) 

where with (28) a BHE-related diagonal resistance matrix  

IR dz
RRz

BHE ∫ ⎟⎟
⎠

⎞
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⎝

⎛
+= ∆∆

21

11  (45) 

and a source/sink term on the RHS  

( ) I
TT

TB dz
RRz

n
o

n
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appear. The temperature distributions for pipe(s)-in 1
1

+n
iT  

and pipe(s)-out 1
1
+n

oT  represent complex analytical 

expressions as given in the previous text (see equation 38). 
Since they are again dependent on the soil temperature  
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=
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the matrix system (44) is solved via an iterative procedure 
according to  

starting solution τ 0=
[ ]( ) { }( ) { } ( ){ }n

sBHE
n

s
n

sBHEs TBBTRA +=⋅+ ++ 1,1* τ  

1 τiteration +  (48) 

[ ]( ) { }( ) ( ) { } ( )( ){ }ττ ,111,1* ++++ +=⋅+ n
sBHE

n
s

n
sBHEs TBBTRA  

The iterations with the current time level (n +1) are stopped 
if  

( ) ( ) ( ) δττ <− +++

pL

n
s

n
s TT ,11,1

 (49) 

2.6 Model Validation 

2.6.1 Analytical Solution of Heat Transport in a Single Pipe 
with Soil Interaction 

Exact solutions for heat flow in BHE configurations 
imbedded in a 3D layered soil system do not exist. 
However, there are analytical solutions suited for the partial 
problem of the 1D heat transport in a single pipe with a 
lateral heat exchange to the surrounding grout or soil. It can 
be used to compare the numerical results for a BHE 
solution at a starting period when the heat flow develops in 
the 1D pipe-in of a heat exchanger interacting with soil. It is 
assumed that the heat transfers to the grout and to the soil 
are equal. In such a case the governing heat transport 
equation reads  

( ) 0
2

2

=−+
∂
∂−

∂
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∂
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sTT
z

T
D

z

T
u

t

T φ
 (50) 

where T (=Ti1) is the fluid temperature in the pipe-in, u is 
the refrigerant fluid velocity, D is the thermal diffusivity, φ 
is a specific heat transfer coefficient, Ts is the surrounding 
soil temperature taken as a reference temperature and z is 
the vertical coordinate. Thermo-dispersivity, refrigerant 
fluid velocity and specific heat transfer coefficient are 
related to the parameters used in the numerical modelling as 
follows: 
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 (51) 

Choosing the following initial and boundary conditions 
according to 

( ) ( ) ( ) 0, ;,0 ;0, =∞
∂
∂== t

z

T
TtTTzT is

 (52) 

the analytical solution (van Genuchten et al., 1982) for Eq. 
50 is given by 
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The numerical model is shown in Figure 3 forming a 3D 
box with a horizontal extent of 20 m x 20 m and a depth of 
1 m. In the central position a single BHE is located, where 
the heat transfer coefficients of pipe-in to grout and grout to 
soil are identical Φi1g = Φsg, while the heat transfer of the 
pipe-out is set to zero Φo1g = 0 to eliminate thermal 
interaction of the pipe-out to the grout heated by pipe-in. 

 

Figure 3: Single BHE in a 3D mesh (exaggerated cut 
view) 

 

Figure 4: Computed temperature profiles in comparison 
to the analytical solution (with 100 and 200 
layers, respectively) for the single pipe-soil 
interaction at t = 0.02 d 

The computed temperature BHE profiles in comparison to 
the analytical solution at t = 0.02 days are shown in Figure 
4, revealing a good agreement. As seen in Figure 4 at early 
times when the heat flow through the pipe is significantly 
influenced by advection a sufficient vertical spatial 
discretization is needed to obtain accurate solutions 
(compare the 100 vs. the 200 layer solution). At later times, 
however when the heat front in the pipe disappears and the 
process is dominated by heat transfer this effect declines. 

2.6.2 BHE Solution Versus Fully Discretized 3D Model 
(FD3DM) Solution Applied to a Double U-Shape Pipe 
System  

Comparisons between the proposed BHE solution and a 
fully discretized 3D model solution (FD3DM) are 
performed for heating operation of a 2U configuration 
located in central position of an aquifer domain measuring 
20 m x 20 m in horizontal directions and 55 m in depth. The 
meshes used for both solutions are shown in Figure 5 

revealing a much more refined tessellation for FD3DM to 
discretize appropriately the interior geometric structure of 
the 2U exchanger. In both meshes, however, the vertical 
discretization is the same by using 55 layers. For the 2U 
exchanger problem the used parameters are summarized in 
Table 1. In FD3DM 1D discrete feature (fracture) elements 
have been used to model the internal pipes. It was necessary 
to assign the inner pipe surplus to a high thermal 
conductivity of solid with anisotropy. For the surplus we 
took a value of λs = 103 J m–1s–1 with an anisotropy factor 
of 0, =s

yyxx
s
zz λλ . 

Table 1: Parameters of the 2U Exchanger Problem 

Parameter Symbol  Value  Unit  
Depth of borehole  L  55  M 

Borehole diameter  D 12  cm 
Outer diameters of pipes-in  di1

o 3.2 cm 
Outer diameters of pipes-
out  

do1
o 3.2 cm 

Pipes-in wall thicknesses  bi1,bi2 2.9  mm 
Pipes-out wall thicknesses  bo1,bo2 2.9 mm 
Pipe distance  w 4.2  cm 
Volumetric heat capacity of 
pipe walls  

ρpcp 2.1574⋅106 J m-3 K-1 

Thermal conductivities of 
pipe walls  

λi1
p,λi2

p, 
λo1

p,λo2
p 

0.38 W m-1 K-1 

Total flow discharge of 
refrigerant 

Qr 38.284  m 3d –1 

Total heat input rate  Qh 6.3242 109· J d–1 
Reference temperature  To R 10  °C 
Inlet temperature  Ti 50 °C 
Volumetric heat capacity of 
refrigerant  

r c r  4.12984⋅106 J m–3K–1 

Thermal conductivity of 
refrigerant 

r 0.65  J m–1s–1K–1 

Volumetric heat capacity of 
grout 

ρgcg  2.19⋅106· J m–3K–1 

Thermal conductivity of 
grout  

λg  2.3 J m–1s–1K–1 

Porosity of soil  ε   
Volumetric heat capacity of 
groundwater 

ρfcf 4.2⋅106 J m–3K–1 

Volumetric heat capacity of 
soil 

ρscs 2.405⋅106· J m–3K–1 

Thermal conductivity of 
groundwater 

λf  0.65 J m–1s–1K–1 

Thermal conductivity of 
soil 

λs  2.46 J m–1s–1K–1 

Longitudinal thermo-
dispersivity of aquifer 

αL  0.5  m 

Transverse thermo-
dispersivity of aquifer 

αT  0.05  m 

Initial temperature  Ts(0) 10 °C 
Computed heat transfer coefficients:  
pipe-in to grout  Φfig  91.624  J m–2s–1K–1 
pipe-out to grout  Φfog  91.624  J m–2s–1K–1 
grout to grout 1  Φgg1  802.43  J m–2s–1K–1 
grout to grout 2  Φgg2  31.702  J m–2s–1K–1 
grout to soil  Φgs  181.02  J m–2s-1K–1 
Computed thermal resistances:  
pipe-in to grout  Rfig 0.1326  m s K J–1 
pipe-out to grout  Rfog 0.1326  m s K J–1 
grout to grout 1  Rgg1 0.02077  m s K J–1 
grout to grout 2  Rgg2 0.26287  m s K J–1 
grout to soil  Rgs 0.05861  m s K J–1 
 

A comparison of the BHE solutions to a fully discretized 
3D model (FD3DM) is shown in Figure 6 for the short-term 
outlet temperature history, in Figure 7 for the long-time 
outlet temperature history and in Figure 8 for the vertical 
temperature profile after 12 hours. As revealed the 
agreement between the different solutions is quite good. For 
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long-term predictions the analytical BHE simulation has 
proved to be reasonably accurate and fast, while the 
numerical BHE computations became superior to the 
analytical BHE solution at short-term predictions and in 
good agreement with the FD3DM results from beginning.  

For the FD3DM a forward Adams-Bashforth/backward 
trapezoid time integration scheme with a RMS error 
tolerance of 10–4 has been used. It took 276 time steps for 
the simulation period of 365 days. For the BHE solutions 
always a forward Euler/backward Euler time marching 
predictor-corrector scheme with a RMS error tolerance of 
10–3 was preferred due to better robustness for this class of 
problems.  

The analytical BHE required only 227 time steps. In 
contrast, the numerical BHE computations failed for the 
long-term run because the adaptive time step control could 
not increase the time steps anymore and a very large 
number of time steps would follow. Obviously, this is 
caused by random effects triggered from the stiff matrix 
system by poor numerical precision of the only 8 byte 
floating point mantissa.  

The good agreement of the BHE solutions with the FD3DM 
results demonstrates the accuracy and practical applicability 
of the new BHE modeling strategy. Its numerical efficiency 
and capability will be more apparent for arrays of BHE. 

 

Figure 5: Finite-element meshes for (a) BHE consisting of 130.185 pentahedral elements and (b) FD3DM consisting of 
1.204.665 pentahedral elements. Both meshes are vertically discretized by 55 layers 

 

Figure 6: Short-term outlet temperature history of the BHE solution in comparison to the fully discretized 3D model 
(FD3DM) solution measured at the pipes’ outlet 
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Figure 7: Long-term outlet temperature history of the 
BHE solution in comparison to the fully 
discretized 3D model (FD3DM) solution 
measured at the pipe’s outlet 

 

 

Figure 8: Analytical BHE solution of temperature 
profile at t = 12 hours in comparison to the fully 
discretized 3D model (FD3DM) 

3. COUPLING OF FEFLOW WITH THE ENERGY 
SIMULATION CODE TRNSYS 

Borehole thermal energy stores (BTES) consist of a large 
number of borehole heat exchangers typically installed with 
spacing in the range of two to five meters as the thermal 
interaction of the individual borehole heat exchangers is 
essential for an efficient storage process. BTES can be a 
reasonable technical and economical alternative – 
depending on the local geological and hydrogeological 
situation – to other techniques of heat storage for the use in 
solar assisted district heating systems with seasonal heat 
storage. BTES are very sensitive to groundwater flow. Both 
for permit procedures required by the authorities and for 
plant-engineering issues, a simulation tool is needed which 
is capable of predicting the three-dimensional temperature 
profile in the underground and the thermal efficiency of the 
store. Together with the new BHE option of FEFLOW the 
simulation of such installations is a feasible task.  

In addition it is possible using a newly developed IFM 
module (ifm_trnsys) to couple the FEFLOW simulation 
with the energy simulation software TRNSYS (e.g. Bradley 
and Kummert, 2005). This way it is possible to model the 
complete energy transfer cycle for instance between an 
array of solar panels, the connected buildings and the 
subsurface heat storage system together with the thermal 

interaction with the surrounding rocks. Ifm_trnsys uses 
FEFLOW’s programmable interface API. The program 
allows an arbitrary number of BHE’s which can be 
connected using arbitrary complex circuits. An example of 
the user interface is shown in Figure 9. 

 

Figure 9: The user interface of the ifm_trnsys code for 
connecting the BHE array 

A typical result of such computations is shown in Figure 
10. However, the main model will be computed in the 
future. 

CONCLUSIONS 

A new finite-element analysis together with an analytic 
algorithm for the efficient computation of BHE systems has 
been implemented in FEFLOW by using a non-sequential 
solution strategy. First verification and benchmark 
calculations have shown good accuracy. Further tests with 
real data and field applications are currently in progress 
(e.g. Bauer et al., 2009). Furthermore, a direct coupling 
with the TRNSYS (Bradley and Kummert, 2005) code for 
energy simulation of buildings will be released shortly.  

 

 

Figure 10: Temperature distribution around an array of 
80 BHE computed with FEFLOW coupled with 
TRNSYS 
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