Energetische Beurteilung von Warmwasserheizanlagen durch rechnerische Betriebssimulation

Von der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Helmut Ast

geboren in Mühlacker

Hauptberichter:

Prof.-Dr.-Ing. H. Bach

Mitberichter:

Prof.Dr.-Ing. K. Gertis Prof. Dr. J. Lebrun

Tag der Einreichung: Tag der mündlichen Prüfung: 6. Oktober 1988 25. Januar 1989

Institut für Kernenergetik und Energiesysteme der Universität Stuttgart 1989

Kurzfassung

Es wird eine Methode zur energetischen Beurteilung von Warmwasserheizanlagen vorgestellt. Mit ihr läßt sich das Zusammenwirken des Gesamtsystems "Gebäude, Heizanlage, Bewohner und Klima" unter instationären Bedingungen erfassen, so daß auch Regelvorgänge untersucht werden können. Energetische und betriebliche Kenngrößen für die in drei Prozeßbereiche unterteilte Heizanlage werden eingeführt und das zur Bestimmung der Kenngrößen notwendige Instrumentarium, ein modular strukturiertes Rechenprogramm, wird aufgebaut. Hierzu werden bestehende thermische Modelle für Heizanlagenkomponenten verfeinert und in hydraulischer Hinsicht erweitert. Auf Labormessungen aufbauend wird neu ein Modell für Thermostatventile entwickelt, das alle Einflußgrößen auf deren thermisches und hydraulisches Verhalten berücksichtigt. Darüber hinaus wird ein Modell erstellt, welches das thermisch dynamische Verhalten von Gebäuden für beliebige betriebliche und meteorologische Randbedingungen abbildet. Die das Gesamtsystem beschreibenden gewöhnlichen und partiellen Differentialgleichungen werden mit bekannten numerischen Verfahren gelöst. Alle Modelle und das Rechenprogramm sind experimentell und durch Vergleichsrechnungen mit anderen Modellen bestätigt.

Die Beurteilungsmethode und das Rechenprogramm werden auf ein gut wärmegedämmtes Mehrfamilienhaus mit einer technisch hochwertigen Heizanlage angewandt. Die Einflüsse unterschiedlicher Regelung der Heizanlage und unterschiedlicher Nutzung der Räume des Gebäudes auf die Kenngrößen und den Energiebedarf der Anlage werden untersucht. Die wichtigste Schlußfolgerung für Konzeption und Betrieb von hochwertigen Warmwasserheizanlagen in gut wärmegedämmten Gebäuden ist, daß im Bereich der Wärme-übergabe an die Räume, im Gegensatz zu den restlichen Prozeßbereichen, ein hohes Einsparpotential liegt. Es hat sich auch gezeigt, daß die Bewohner durch die Einstellung der Regeleinrichtungen und den gewünschten Luftwechsel den Energiebedarf dieser Anlagen entscheidend prägen.

A method to assess the thermohydraulic behaviour of wet central heating systems is presented. It is able to cover the interaction of the system "building, heating system, occupant and climate" under transient conditions; therefore control strategies can be investigated. Thermal and operational characteristics of the heating system, which is devided into three procedural parts are introduced. To quantify these characteristics a modular computer program is built up, improving and extending thermal models of the components of the heating system with respect to their hydraulic behaviour. Based on measurements a model for thermostatic valves is developped, which takes all effects on their thermohydraulic behaviour into account. Furthermore a model is established, which describes the thermal behaviour of buildings under arbitrary operational and meteorological conditions. The simple and partial differential equations are solved by common numerical methods. All models and the computer program are verified by measurements and comparison with results of other models.

This method and the program are applied to a well insulated multistorey building with a modern heating system. The influence of different control strategies and different behaviour of the occupants are investigated. The most important conclusion concerning design and operation of highquality heating systems in well insulated buildings is, that the improvement of thermostatic room temperature control has a high energy saving rate in opposite to the improvements of boiler and distribution system. Furthermore it is shown, that the occupants have a dominant influence on the energy consumption, due to their handling of the control equipment and their desired air infiltration rate.

INHALTSVERZEICHNIS

Seite:

PHD	ZFASSUNG		
KUK	FACOUNG		
FORM	MELZEICH	IEN	
1	EINLEI	TUNG	1
2	LITERA	ATURAUSWERTUNG	4
3	BEURTE	EILUNGSMETHODE	10
	3.1	Beurteilungskriterien	12
	3.1.1	Thermische Behaglichkeit der Bewohner	12
	3.1.2	Lufterneuerung in den Räumen	16
		Nutzenergie eines Raumes und des Gebäudes	17
	3.1.4	Energiebedarf der Heizanlage	19
	3.1.5	Schalthäufigkeit und Laufzeit des Brenners	
	3.2	Kenngrößen	23
	3.2.1		24
	3.2.2		24
	3.2.3		25
	3.2.4		
		und an das Gebäude	25
	3.2.5	Schalthäufigkeit des Brenners	26
	3.2.6	Brennerlaufzeitgrad	27
	3.2.7	Mittlere Laufzeit pro Brennerstart	27
4	RECHENPROGRAMM		28
	4.1	Thermische Modelle der Heizanlagen-	
		Komponenten	28
		Heizkessel	28
		Umwälzpumpe	31
		Rohrleitungen	32
		Heizkörper	34
	4.1.5	Thermostatventile	38

			Seite:
	4.2	Hydraulische Modelle der Heizanlagen- Komponenten	46
		Komponencen	40
		Rohrleitungen	47
	4.2.2	Einzelwiderstände	48
	4.3	Thermisches Modell des Gebäudes	53
	4.3.1	Energiebilanz der Raumumschließungsflächen	53
	4.3.2	Energiebilanz der Raumluft	60
	4.4	Lösung der Modellgleichungen	65
	4.5	Ablauf der Betriebssimulation	7.1
5		EIBUNG EINES BEISPIELOBJEKTS	
	(MEHRE	AMILIENHAUS) MIT RANDBEDINGUNGEN	75
	5.1	Beispielobjekt	75
	5.1.1	Gebäude	75
		Heizanlage	79
	5.2	Äußere und innere Randbedingungen	84
	5.2.1	Klima	84
		Wärmeabgabe innerer Wärmequellen	89
	5.2.3	Nutzung der Räume durch die Bewohner	90
6	ERGEB	HISSE DER SIMULATION	9:
	6.1	Einfluß der Regelung der Heizanlage	9:
	6.1.1	Konstante oder außentemperaturgeführte Kesselwassertemperatur	91
	6.1.2		
		Kessel- und Vorlauftemperatur	10
	6.1.3	Unterschiedliche Einstellung der Soll-	
		temperatur der Thermostatventile	110
	6.2	Einfluß der Nutzung der Räume durch	
		die Bewohner	11
	6.2.1	Durchgehende Nutzung bei unterschied-	
		lichem Luftwechsel	11
	6.2.2	Zeitweise Nutzung	12
	6.2.3	Teilweise Nutzung	12

		Seite:
7	ZUSAMMENFASSUNG	127
8	LITERATURVERZEICHNIS	131
9	ANHANG: BESCHREIBUNG DES RECHENPROGRAMMES	145