Theoretische Untersuchungen zur Kühlleistungssteigerung durch innovative Kühlsysteme für Brennstoffzellen-Elektrofahrzeuge

Von der Fakultät Maschinenbau der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Mark Reichler

geboren in Hamburg

Hauptberichter:

Prof. Dr. Dr.-Ing. H. Müller-Steinhagen

Mitberichter:

Prof. Dr.-Ing. J. Wiedemann

Tag der mündlichen Prüfung:

01. April 2008

Institut für Thermodynamik und Wärmetechnik der Universität Stuttgart

2009

Kurzfassung

Die vorliegende Arbeit beinhaltet theoretische Untersuchungen zu Kühlkonzepten für Brennstoffzellen-Elektrofahrzeuge. Zentrales Thema ist das Potenzial zur Kühlleistungssteigerung durch innovative Kühlsysteme bzw. Maßnahmen zur Steigerung der Leistungsfähigkeit des konventionellen Kühlsystems.

Bei Brennstoffzellen-Elektrofahrzeugen muss im Vergleich zu herkömmlichen Fahrzeugen mit Verbrennungsmotor mehr Wärme über das Kühlsystem an die Umgebung abgeführt werden. Die Grenze der Leistungsfähigkeit der konventionellen Flüssigkeitsumlaufkühlung wird bei Brennstoffzellen-Elektrofahrzeugen zunehmend überschritten. Um die Abwärme von Brennstoffzellensystemen bei hohen Antriebsleistungen und hohen Umgebungstemperaturen abführen zu können, sind leistungsfähigere Kühlsysteme notwendig. Als Grundlage für die in dieser Arbeit durchgeführten Untersuchungen zu unterschiedlichen Kühlkonzepten dient die "A-Klasse" der Firma DaimlerChrysler, in der ein Protonenelektrolytmembran-Brennstoffzellensystem integriert ist.

Um das Potenzial zur Kühlleistungssteigerung zu ermitteln, werden spezielle Berechnungsmodelle für den Kühlmittelkühler und den Kondensator entwickelt, die es ermöglichen, die Leistung des Kühlsystems zu berechnen. Die Berechnungsmodelle werden mit vorhandenen Daten validiert.

Auf Basis einer Patent- und Literaturrecherche wird der Stand der Technik zu Kühlsystemen für Brennstoffzellen-Elektrofahrzeugen dargestellt. Darüber hinaus werden alternative Kühlkonzepte aufgezeigt und hinsichtlich ihres Potenzials als Alternative zur Flüssigkeitsumlaufkühlung untersucht.

Die Verdampfungskühlung stellt ein alternatives Kühlkonzept dar, welches mit dem größten Potenzial zur Kühlleistungssteigerung hervorgeht und daher detailliert untersucht wird. Dabei werden zwei unterschiedliche Ausführungsarten untersucht. Bei den Berechnungen werden darüber hinaus unterschiedliche Kältemittel (R113, R236fa und R245fa) untersucht. Abhängig von der Ausführungsart und vom Kältemittel ergibt sich eine rechnerisch ermittelte Kühlleistungssteigerung von 18.2 bis zu 32.6 % im Vergleich zur konventionellen Flüssigkeitsumlaufkühlung. Die Verdampfungskühlung stellt damit eine Alternative für den Einsatz in Brennstoffzellen-Elektrofahrzeugen dar, die es experimentell weiter zu untersuchen gilt.

Abstract

In this work theoretical investigations are carried out for cooling systems, which are used in fuel cell vehicles. This work focuses mainly on the capability of increasing the heat rejection rate by using new alternative cooling systems and by improving the conventional cooling system.

Fuel cell vehicles have a higher demand of heat rejection to the ambient than comparable vehicles with combustion engine. The performance of conventional liquid cooling systems, especially at high loads and high ambient temperatures, is often not sufficient anymore. Hence, cooling systems with improved performance are necessary for fuel cell vehicles. The investigations in this work are based on DaimlerChrysler's "A-Class" having a PEM-Fuel Cell system integrated.

Specific computational models are developed for radiators and condensers to evaluate the performance of different cooling concepts. The models are validated with experimental data.

Based on an intensive investigation in the open literature the state of the art of cooling systems for fuel cell vehicles is depicted. Furthermore new cooling concepts as an alternative to the liquid cooling system are presented.

The method of cooling the fuel cell by using two-phase transition shows the greatest capability to increase the cooling performance. Hence, this concept is investigated in detail. Two different concepts with three different refrigerants (R113, R245fa und R236fa) are analyzed. Cooling performance of this concept shows improvement of 18.2 up to 32.6 % compared to the conventional liquid cooling system. Thus, a two phase cooling system represents an alternative cooling system for fuel cell vehicles, which should be closer investigated by experiments.

Inhaltsverzeichnis

Vorwor	t	**********
Kurzfas	ssung	
Abstrac	±	
Inhalts	/erzeichnis	
Abkürz	ungsverzeichnis	
1. Ei	nleitung und Aufgabenstellung	11
2. Br	ennstoffzellensysteme im Fahrzeugbereich	13
2.1	Die Brennstoffzelle (Historie, Technik, Anwendung)	13
2.2	Brennstoffzellen-Elektrofahrzeuge	14
2.3	Kühlsysteme für Brennstoffzellen-Elektrofahrzeuge	18
2.4	Randbedingungen dieser Arbeit	23
3. Be	rechnungsmodelle für die wesentlichen Bauteile	28
3.1	Kühlmittelkühler	28
3.1	.1 Wärmeübergang auf der Kühlmittelseite	31
3.1	2 Druckverlust auf der Kühlmittelseite	38
3.1	.3 Wärmeübergang auf der Luftseite	41
3.1	4 Druckverlust auf der Luftseite	48
3.2	Kondensator	52
3.2	1 Wärmeübergang bei Kondensation	53
3.2.	2 Druckverlust bei Zweiphasenströmung	62
3.3	Pumpe und Verdichter	69
3.4	Validierung der Berechnungsmodelle und Fehlerabschätzung	70
3.4.	1 Kühlmittelkühler	70
3.4.	2 Kondensator	73
4. Gru	undlegende Betrachtungen zur Steigerung der Kühlleistung	76
4.1	Konventionelles Kühlsystem	76
4.2	Alternative Kühlkonzepte	79
4.2.	1 Luftkühlung	79
4.2.	2 Wasserstoffgaskühlung	81
4.2.	3 Verdampfungskühlung	82
4.2.	4 Verfahren zur Kälteerzeugung	98

4.	2.5	Verdunstungskühlung	89
4.2.6		Wärmespeicher	90
4.2.7		Nanofluide	90
4.3	Po	tenzialabschätzung der einzelnen Kühlkonzepte	96
5. D	etaill	ierte Analyse eines Verdampfungskühlsystems	98
5.1	An	wendung zur Kühlung von Verbrennungsmotoren und	
	Bre	ennstoffzellenstacks	98
5.2	Sy	stemaufbau und Funktionsweise	100
5.3	Ko	mponenten	102
5.3	3.1	Kältemittel	102
5.3.2		Kondensator	109
5.3.3		Kältemittelförderung	109
5.3.4		Brennstoffzellenstack	112
5.3.5		Leitungen	115
5.3	3.6	Ausgleichsbehälter und Kältemittelfüllmenge	117
5.4	Kül	nlleistung bei idealisierter Betrachtung	119
5.5	Det	aillierte Kühlleistungsuntersuchungen	125
5.5	5.1	Kühlleistung (System A)	130
5.5.2		Kühlleistung (System B)	137
5.6	Bev	vertung	142
6. Zı	ısam	menfassung und Ausblick	148
7. Lit	teratu	rverzeichnis	152
Anhang	д A -	Stoffwerte	162
Anhang	В-	Geometrie	164
Anhang	g C -	Wärmeübergang bei erzwungener Konvektion	168
Anhang	D -	Wärmeübergang bei Kondensation	170
Anhang	E - 1	Druckverlust bei Kondensation	173
Anhang	۱F - ۱	/erdampfungskühlung System A	176
Anhang	G -	Verdampfungskühlung System B	178