Research activities of the working group
Projects
-
AWT - Investigation of two energy converters with low electrical energy requirements, in order to supply heat to consumers with high temperature demands, using low-temperature district heating network sources
District heating network 4.0 have a maximum supply temperature up to 95 °C, which is relatively low. These networks are a fundamental part of the energy transformation process. The aim of this research project is to provide, in an efficient manner, a higher temperature flow up to 120 °C, to certain consumers with such a requirement using District heating network 4.0, despite its lower supply temperature capability. Two energy converters with low electrical power requirements: an absorption heat transformer, and absorption–compression heat pump, are being investigated for their suitability to increase the temperature in the district heating network in a decentralized, demand-oriented manner. -
EDAPA - Development of a diffusion-absorption refrigerator with a plate heat exchanger as generator
A diffusion-absorption refrigerator is operated exclusively by the addition of heat and does not need any mechanical energy. The refrigerating machine therefore operates free from wear and at a low noise level. In the EDAPA research project, the diffusion-absorption process shall be made applicable for the air conditioning of buildings by scaling the process towards higher cooling capacities.
Team
Publications
- L. Haak, N. Mirl, J. Brunder, K. Spindler, and K. Stergiaropoulos, “Effizienzsteigerung einer NH3/H2O-Absorptionskältemaschine - Experimentelle Untersuchung eines Anlagenkonzepts mit Plattendesorber,” Deutsche Kälte- und Klimatagung, Dresden, p. AA II.1.11-1-AA II.1.11-13, 2021.
- N. Mirl, M. Doil, K. Spindler, and K. Stergiaropoulos, “Comparison of ammonia/water equations of state under operating conditions of absorption systems,” Fluid Phase Equilibria, 2020, doi: 10.1016/j.fluid.2020.112748.
- N. Mirl, F. Schmid, B. Bierling, and K. Spindler, “Design and analysis of an ammonia-water absorption heat pump,” Applied Thermal Engineering, vol. 165, 2020, doi: 10.1016/j.applthermaleng.2019.114531.
- N. Mirl, K. Spindler, and K. Stergiaropoulos, “Visualisierung und Optimierung der Flüssigkeitsverteilung in einem Plattenabsorber,” Jahrestagung des Deutschen Kälte- und Klimatechnischen Vereins, p. AA.II.1.20, 2020, doi: http://dx.doi.org/10.18419/opus-11269.
- F. Yang, T. Grage, N. Mirl, and K. Spindler, “Auswirkungen einer abgesenkten Rücklauftemperatur auf Fernwärmenetze,” EuroHeat&Power, vol. 10/2020, pp. 35–40, 2020.
- F. Yang, N. Mirl, and F. Schmid, “Potenziale von Absorptionswärmepumpen in zentralisierten Wärmeversorgungsnetzen,” Abschlussbericht, 2020.
- N. Mirl, F. Schmid, and K. Spindler, “Experimentelle Untersuchungen zur Senkung der Rücklauftemperatur im Fernwärmenetz,” EuroHeat&Power, vol. 48, no. 5, Art. no. 5, 2019.
- N. Mirl and K. Spindler, “Optimization potentials for the absorber and the generator of an ammonia-water absorption heat pump,” 25th IIR International Congress of Refrigeration, Montreal, Canada, 2019, doi: http://dx.doi.org/10.18419/opus-10574.
- U. Oechsle and K. Spindler, “Investigation of the nucleation temperature of different heat exchanger surfaces in an ice store,” 25th IIR International Congress of Refrigeration, Montreal, Canada, August 24-30, 2019, no. manuscript ID 164, Art. no. manuscript ID 164, 2019.
- K. Spindler, “Scaling parameters between ammonia and water,” 25th IIR International Congress of Refrigeration, Montreal, Canada, August 24-30, 2019, no. manuscript ID 191, Art. no. manuscript ID 191, 2019.
- A. Frank, W. Heidemann, and K. Spindler, “Electronic component cooling inside switch cabinets: combined radiation and natural convection heat transfer,” Heat and Mass Transfer, 2018, doi: 10.1007/s00231-018-2427-y.
- W. Heidemann, “Wärmeübergang durch geschweißte Wände mit aufgeschweißten Rohrschlangen,” VDI-Wärmeatlas, pp. 1–10, 2018.
- N. Mirl, F. Schmid, and K. Spindler, “Reduction of the return temperature in district heating systems with an ammonia-water absorption heat pump,” Case Studies in Thermal Engineering, vol. 12, pp. 817–822, 2018, doi: https://doi.org/10.1016/j.csite.2018.10.010.
- N. Mirl, F. Schmid, and K. Spindler, “Experimentelle Untersuchung zur Einbindung einer Ammoniak-Wasser Absorptionswärmepumpe in Fernwärmenetze,” Jahrestagung des Deutschen Kälte- und Klimatechnischen Vereins, 2018.
- F. Schmid, B. Bierling, and K. Spindler, “Development of a solar-driven diffusion absorption chiller,” Solar Energy, vol. 177, pp. 483–493, 2018, doi: https://doi.org/10.1016/j.solener.2018.11.040.
- F. Schmid, B. Bierling, and K. Spindler, “Development of a solar-driven diffusion absorption chiller,” Solar Energy, pp. 483–493, 2018.
- K. Spindler, “OPTIMUM HIGH PRESSURE FOR TRANSCRITICAL CO2 HEAT PUMPS CONSIDERING ISENTROPIC EFFICIENCY AND GLIDING HEAT EXTRACTION,” 13th IIR Gustav Lorentzen Conference, Valencia, 2018, 2018, doi: dx.doi.org/10.18462/iir.gl.2018.1107.
- K. Spindler, “OPTIMUM HIGH PRESSURE FOR TRANSCRITICAL CO2 HEAT PUMPS CONSIDERING ISENTROPIC EFFICIENCY AND GLIDING HEAT EXTRACTION,” 13th IIR Gustav Lorentzen Conference, Valencia, 2018, 2018.
Weitere Informationen
-
Stoffeigenschaften von Ammoniak-Wasser Mischungen
Die wesentlichen Diagramme für das Arbeiten mit Ammoniak-Wasser Mischungen werden hier bereitgestellt. -
Stoffeigenschaften von Ammoniak
Die wesentlichen Stoffeigenschaften von Ammoniak werden hier aufgeführt.
Contact

Apl. Prof. Dr.-Ing. Klaus Spindler
Team Lead